Answer to: Evaluate the integral: integral of tan^2(x) sec(x) dx. By signing up, you'll get thousands of step-by-step solutions to your homework...
(∫ (sec)(x)+(tan)(x)dx) 相关知识点: 试题来源: 解析 Split the single integral into multipleintegrals. (∫ (sec)(x)dx+∫ (tan)(x)dx) The integral of ( (sec)(x)) with respect to ( x) is ( (ln)(|(sec)(x)+(tan)(x)|)). ( (ln)(|(sec)(x)+(tan)(x)|)+C+∫...
What is the integral of (e^{-2x})(cos x) dx ? What is the integral of this? \int^{r}_{o} x((\sqrt{r^{2} - x^{2) - (-\sqrt{r^{2} - x^{2)) dx What's the integral of sec(x)tan(x) dx? What is the integral of 1/(2x) dx?
Integral of sec(x)*tan(x) by x: 1/cos(x) Integral Calculatorcomputes an indefinite integral (anti-derivative) of a function with respect to a given variable using analytical integration. It also allows to draw graphs of the function and its integral. Please remember that the computed indefin...
Evaluate the integral. \int e^{x}\sin(4x)dx Evaluate the integral. Integral of sec^3 (x) tan (x) dx Evaluate the integral: integral of sec^3 x dx. Evaluate the integral: \int e^{\cos 18t}\sin 18tdt Evaluate the integral. \int x^3\left ( x-1 \right )^{-4}dx ...
Answer to: Evaluate the integral. Integral of sin^2(x) cos(x) dx. (Use C as the arbitrary constant.) By signing up, you'll get thousands of...
The list of basic integral formulas are ∫ 1 dx = x + C ∫ a dx = ax+ C ∫ xndx = ((xn+1)/(n+1))+C ; n≠1 ∫ sin x dx = – cos x + C ∫ cos x dx = sin x + C ∫ sec2x dx = tan x + C ∫ csc2x dx = -cot x + C ...
up出这个对比应该是想表达,两个不定积分形式上虽然有点像,但是实际上结果差异是很大的。 2022-01-22 17:023回复 故事说给枕头听- 第一题分子分母同除cos²x,分子凑微分dtanx,分母sec²x利用三角恒等式化为tan²x+1分母就是2tan²x+1然后套arctan 的积分公式,口算题 2022-01-26 19:21回复 ...
Calculate the Integral of … CLR+–×÷^√f(x)π() √3√4√n√ You can also input: •sqrt(…) •root(n, …) lnlog10lognexpexabs|x| sincostancscseccot arcsinsin-1arccoscos-1arctantan-1 arccsccsc-1arcsecsec-1arccotcot-1 ...
Geometric Approach to the integral $\int \sec x\,dx$ Udita N. Katugampola Full-Text Cite this paper Add to My Lib Abstract: We give a geometric proof of the evaluation of the integral $\int \sec x\,dx$ which is normally done using a rather ad hoc approach. Full-Text Contact ...