Integral of sec(x)*tan(x) by x: 1/cos(x) Integral Calculatorcomputes an indefinite integral (anti-derivative) of a function with respect to a given variable using analytical integration. It also allows to draw graphs of the function and its integral. Please remember that the computed indefin...
Evaluate the integral: {eq}\; \int \tan^2(x) \sec(x) \, \mathrm{d}x {/eq}. Integration in Calculus: Integration techniques can be used to find antiderivatives of a trigonometric function. Sometimes trigonometric identities may be needed to do so. ...
Evaluate the integral. Integral of tan x sec^3 x dx. Evaluate the integral: integral 10 dx / 1 + e^x. Evaluate the integral: integral of (sqrt(16x^2 - 25))/(x^3) dx. Evaluate the integral: integral (1 + x^2)^{1 / 2} dx. ...
(∫ (sec)(x)+(tan)(x)dx) 相关知识点: 试题来源: 解析 Split the single integral into multipleintegrals. (∫ (sec)(x)dx+∫ (tan)(x)dx) The integral of ( (sec)(x)) with respect to ( x) is ( (ln)(|(sec)(x)+(tan)(x)|)). ( (ln)(|(sec)(x)+(tan)(x)|)+C+∫...
The list of basic integral formulas are ∫ 1 dx = x + C ∫ a dx = ax+ C ∫ xndx = ((xn+1)/(n+1))+C ; n≠1 ∫ sin x dx = – cos x + C ∫ cos x dx = sin x + C ∫ sec2x dx = tan x + C ∫ csc2x dx = -cot x + C ...
Evaluate the integral. 1) \int \ tan 5 xdx 2) \int_{\ln 2}^{\ln 4} e^{2x} dx Evaluate the integral. \int \frac {\sec \theta}{\cos \theta} d\theta Evaluate the integral: int -1 3 x3 + 3 (x + 5)(x + 4) dx. ...
Answer to: Evaluate the integral: integral of sec^4 x tan x dx. By signing up, you'll get thousands of step-by-step solutions to your homework...
2. Integral of tan2x: ∫tan2xdx=−12log|sec2x|+C2 3. Integral of tanx: ∫tanxdx=−log|secx|+C3 Step 7: Combine the resultsPutting it all together, we have:∫tanxtan2xtan3xdx=−13log|sec3x|+12log|sec2x|+log|secx|+Cwhere C is the constant of integration. Final Answer:∫...
Calculate the Integral of … CLR+–×÷^√f(x)π() √3√4√n√ You can also input: •sqrt(…) •root(n, …) lnlog10lognexpexabs|x| sincostancscseccot arcsinsin-1arccoscos-1arctantan-1 arccsccsc-1arcsecsec-1arccotcot-1 ...
I=∫sec2x(secx+tanx)9/2dx, we will use the substitution t=secx+tanx. Step 1: Substitute t=secx+tanx From the identity sec2x=1+tan2x and the derivative of t: dtdx=secxtanx+sec2x=sec2x+secxtanx. Thus, we can express dx in terms of dt: dx=dtsec2x+secxtanx. Step 2: Rewrite se...