用ImageNet-1K进行预训练的BEIT-384比使用 ImageNet-22K进行监督预训练的 ViT-384表现更好。
imagenet-1k是 ISLVRC2012的数据集,训练集大约是1281167张+标签,验证集是50000张图片加标签,最终打分的测试集是100000张图片,一共1000个类别。 imagenet-21k是WordNet架构组织收集的所有图片,大约1400万张,2…
Research 的何恺明、Ross Girshick 及 Piotr Dollar 三位大佬共同完成的最新研究论文 Rethinking ImageNet ...
具体而言,iBOT将k-NN、linear probing和微fine-tuning设置下的ImageNet-1K分类基准分别提高到77.1%、79.5%和83.8%(使用ViT Base/16),比之前的最佳结果高出1.0%、1.3%和0.2%。 当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0...
上表展示了ImageNet-1K上微调的结果,iBOT通过ViT-S/16和ViTB/16分别达到82.3%和83.8%的Top-1精度。 上表展示了ImageNet-22K上预训练之后,在ImageNet-1K上的微调实验结果。使用ImageNet-22K预训练的iBOT使用ViT-B/16和ViT-L/16分别...
在大模型、大数据集的 ImageNet-22K 中的750万张图像训练 ResNet 101模型任务中,在选择了 5120的batch size以后,IBM 也达到了88%的拓展效率。 IBM 的团队还创造了一项新纪录,此前 Facebook 保持了用 ImageNet-1K 数据集训练 ResNet 50 模型只需要1个小时的记录,IBM 借助 DDL 把基于 Torch 的模型拓展到了...
在大模型、大数据集的 ImageNet-22K 中的750万张图像训练 ResNet 101模型任务中,在选择了 5120的batch size以后,IBM 也达到了88%的拓展效率。 IBM 的团队还创造了一项新纪录,此前 Facebook 保持了用 ImageNet-1K 数据集训练 ResNet 50 模型只需要1个小时的记录,IBM 借助 DDL 把基于 Torch 的模型拓展到了...
data_simmim_ft.py data_simmim_pt.py imagenet22k_dataset.py map22kto1k.txt samplers.py zipreader.py data_samples models utils __init__.py base_train.sh interpolate4downstream.py main.py main_param.py main_vis.py readme small_train.sh test.py throughput_test.shBreadcrumbs RS-vHeat /da...
如果使用ImageNet数据集本身提供的22k版本进行微调,大规模的ViTAE模型还可以有1.0%左右准确的提升。此外,仅仅使用ImageNet-1K数据集进行训练时,我们所提出的ViTAE-H(644M)模型在ImageNet-Real数据集上达到了91.2%的分类准确度,超过了...
在大模型、大数据集的 ImageNet-22K 中的750万张图像训练 ResNet 101模型任务中,在选择了 5120的batch size以后,IBM 也达到了88%的拓展效率。 IBM 的团队还创造了一项新纪录,此前 Facebook 保持了用 ImageNet-1K 数据集训练 ResNet 50 模型只需要1个小时的记录,IBM 借助 DDL 把基于 Torch 的模型拓展到了...