imagenet-1k是 ISLVRC2012的数据集,训练集大约是1281167张+标签,验证集是50000张图片加标签,最终打分的测试集是100000张图片,一共1000个类别。 imagenet-21k是WordNet架构组织收集的所有图片,大约1400万张,2…
Google 最新的研究成果 BERT 的热度还没褪去,大家都还在讨论是否 ImageNet 带来的预训练模型之风真的要...
具体而言,iBOT将k-NN、linear probing和微fine-tuning设置下的ImageNet-1K分类基准分别提高到77.1%、79.5%和83.8%(使用ViT Base/16),比之前的最佳结果高出1.0%、1.3%和0.2%。 当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0...
具体而言,iBOT将k-NN、linear probing和微fine-tuning设置下的ImageNet-1K分类基准分别提高到77.1%、79.5%和83.8%(使用ViT Base/16),比之前的最佳结果高出1.0%、1.3%和0.2%。 当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0...
当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0.3%。除此之外,当迁移到其他数据集或在半监督和非监督分类设置下时,这种提升也是有效的。 本文提出的方...
当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0.3%。除此之外,当迁移到其他数据集或在半监督和非监督分类设置下时,这种提升也是有效的。 本文提出的方法可以帮助模型在全局和局部尺度上进行图像识别。作者发现,patch token中学习到...
域名是我们使用网络时经常听到的词汇,它是网页的名称,通过域名我们可以直接访问网页,一般域名都是由...
当使用ImageNet-22K进行预训练时,使用ViT-L/16的iBOT可实现81.6%的linear probing精度和86.3%的微调精度,两者均比以前的最佳结果高0.3%。 除此之外,当迁移到其他数据集或在半监督和非监督分类设置下时,这种提升也是有效的。本文提出的方法可以帮助模型在全局和局部尺度上进行图像识别。作者发现,patch token中学习到...