本文分析了异质自回归模型的潜力,包括跳跃预测实现波动率(RV)。对于这种方法,我们根据标准普尔500指数的5年日内数据的20年历史计算RV。我们的结果表明,基础HAR-RV-J模型确实能够提供令人满意的RV预测。 有问题欢迎联系我们! 本文摘选 《 R语言HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率...
本文分析了异质自回归模型的潜力,包括跳跃预测实现波动率(RV)。对于这种方法,我们根据标准普尔500指数的5年日内数据的20年历史计算RV。我们的结果表明,基础HAR-RV-J模型确实能够提供令人满意的RV预测。 有问题欢迎联系我们! 本文摘选《R语言HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率》...
本文分析了异质自回归模型的潜力,包括跳跃预测实现波动率(RV)。对于这种方法,我们根据标准普尔500指数的5年日内数据的20年历史计算RV。我们的结果表明,基础HAR-RV-J模型确实能够提供令人满意的RV预测。 有问题欢迎联系我们! 本文摘选 《 R语言HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率...
本文分析了异质自回归模型的潜力,包括跳跃预测实现波动率(RV)。对于这种方法,我们根据标准普尔500指数的5年日内数据的20年历史计算RV。我们的结果表明,基础HAR-RV-J模型确实能够提供令人满意的RV预测。 有问题欢迎联系我们! 本文摘选《R语言HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率》...
本文将HAR-RV-J与递归神经网络(RNN)和混合 HAR-RV-J- RNN模型进行比较,以预测波动性,从而分析预测性。 循环神经网络 人工神经网络是一种功能强大的非参数工具,用于信号滤波,模式识别和插值,也可以容忍有误差的数据,并找到模型参数之间的非线性关联 。大多数计量经济模型是通过捕获时间序列的特定特征(例如长记忆)或...
HAR模型 示例 将HARRV模型拟合到道琼斯工业指数,我们加载每日实际波动率。 > #每天获取样本实际波动率数据 > DJI_RV = realized$DJI; #选择 DJI > DJI_RV = DJI_RV[!is.na(DJI_RV)]; #删除缺失值 第二步,我们计算传统的异构自回归(HAR)模型。由于HAR模型只是线性模型的一种特殊类型,因此也可以通过以下...
作为另一个演示,我们使用midasr来预测每日实现的波动率。Corsi(2009)提出了一个简单的预测每日实际波动率的模型。实现波动率的异质自回归模型(HAR-RV)定义为 我们假设一周有5天,一个月有4周。该模型是MIDAS回归的特例: 为了进行经验论证,我们使用了由Heber,Lunde,Shephard和Sheppard(2009)提供的关于股票指数的已实...
HARRVCJ模型拟合 估计harModel的更复杂版本。例如,在Andersen等人中讨论的HARRVCJ模型。可以使用示例数据集估算,如下所示: > data = makeReturns(data); #获取高频收益数据 > x Model: sqrt(RV1) = beta0 + beta1 * sqrt(C1) + beta2 * sqrt(C5) + beta3 * sqrt(C10) + beta4 * sqrt(J1) + ...
将HARRV模型拟合到道琼斯工业指数,我们加载每日实际波动率。 > #每天获取样本实际波动率数据 > DJI_RV = realized$DJI; #选择 DJI > DJI\_RV = DJI\_RV\[!is.na(DJI_RV)\]; #删除缺失值 第二步,我们计算传统的异构自回归(HAR)模型。由于HAR模型只是线性模型的一种特殊类型,因此也可以通过以下方式实现...
本博客比较了GARCH模型(描述波动率聚类),ARFIMA模型( 长记忆),HAR-RV模型(基于高频数据 ),以及来自SSE 50指数和CME利率期货的样本。 此外,本文使用滚动时间窗预测方法来计算预测波动率并构建指数以评估模型的准确性。结果表明,基于长记忆和实现波动率的ARFIMA-RV模型是最准确的模型。