文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将语义分割和对像素进行向量表示结合起来的多任务模型,负责对图片中的车道线进行实例分割;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐...
该论文提出了一种 端到端 的 实例分割方法,用于车道线检测; 论文包含 LaneNet + H-Net 两个模型网络,其中 LaneNet 是一种将 语义分割 和 像素矢量化 结合起来的多任务模型,语义分割用来分割车道线与背景,像素矢量化 用于把属于同一条车道线的像素 聚类 在一起, H-Net 是个小网络,用于预测 转换矩阵 H,使用...
该论文提出了一种 端到端 的 实例分割方法,用于车道线检测; 论文包含 LaneNet + H-Net 两个模型网络,其中 LaneNet 是一种将 语义分割 和 像素矢量化 结合起来的多任务模型,语义分割用来分割车道线与背景,像素矢量化 用于把属于同一条车道线的像素 聚类 在一起, H-Net 是个小网络,用于预测 转换矩阵 H,使用...
该论文提出了一种 端到端 的 实例分割方法,用于车道线检测; 论文包含 LaneNet + H-Net 两个模型网络,其中 LaneNet 是一种将 语义分割 和 像素矢量化 结合起来的多任务模型,语义分割用来分割车道线与背景,像素矢量化 用于把属于同一条车道线的像素 聚类 在一起, ...
文中提出了一种端到端的车道线检测算法,包括LaneNet和H-Net两个网络模型。其中,LaneNet是一种将语义分割和对像素进行向量表示结合起来的多任务模型,负责对图片中的车道线进行实例分割;H-Net是由卷积层和全连接层组成的网络模型,负责预测转换矩阵H,使用转换矩阵H对属于同一车道线的像素点进行回归(我的理解是对使用坐...