图解机器学习:如何用gradient descent一步一步求解最优linear regression 模型以及其他值得注意的细节.mp4 吴恩达机器学习课程笔记(图解版)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili p10
批梯度下降(batch gradient descent) 如下公式是处理一个样本的表达式: 转化为处理多个样本就是如下表达: 这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一...
Gradient descent allows the model to modify its predictions, lowering the overall error and increasing the precision of the regression line. This is done by iteratively updating the parameters (slope and intercept) using the gradient of the MSE. Implementing Gradient Descent in Linear Regression An ...
Understanding Linear Regression and Gradient DescentSuat, Atan
Linear Regression&Gradient descent 慢慢变强的me 正在搞kg 参考链接1:线性回归与梯度下降算法 - 上品物语 - 博客园 参考链接2:批量梯度下降(BGD)、随机梯度下降(SGD)、小批量随机梯度下降(MSGD)实现过程详解 - 云计算技术频道 - 红黑联盟 一:批量梯度下降法(batch gradient descent,BGD) 批量梯度下降法就是原始...
这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一个二次的凸函数,不会产生局部最优的情况。(假设学习步长α不是特别大) ...
When you build a simple linear regression model, the goal is to find the parameters B0 and B1. To find the best parameters, we use gradient descent. Imagine your model finds that the best parameters are B0 = 10 and B1 = 12.
特征X的数目为n,在线性回归中,我们得到一个类似y=θ0+θ1X1+θ2X2的线性模型,则为了统一,设参数向量θ=[θ0、θ1、θ2]的n+1维向量,则相应的,输入特征X也为对应的n+1维向量,其中X0=1。 监督学习模型就是要确定这样的θ。其依据应当是使得在训练集中,h(xi)的值与yi的值要尽可能接近。故而我们建立...
Linear Regression and Gradient Descent 随着所学算法的增多,加之使用次数的增多,不时对之前所学的算法有新的理解。这篇博文是在2018年4月17日再次编辑,将之前的3篇博文合并为一篇。 1.Problem and Loss Function 首先,Linear Regression是一种Supervised Learning,有input X,有输出label y。X可以是一维数据,也...
import numpy as np #设置数据集 X = np.array([1, 2, 3, 4, 5]) Y = np.array([5, 7, 9, 11, 13]) #设置超参数 learning_rate = 0.01 B = 0 W = 0 num_iterations = 1000 #梯度下降法 for i in range(num_iterations): #网络模型 Y_hat = W * X + B #误差模型 # E = np...