FCM算法首先是由E. Ruspini提出来的,后来J. C. Dunn与J. C. Bezdek将E. Ruspini算法从硬聚类算法推广成模糊聚类算法。FCM算法是基于对目标函数的优化基础上的一种数据聚类方法。聚类结果是每一个数据点对聚类中心的隶属程度,该隶属程度用一个数值来表示。FCM算法是一种无监督的模糊聚类方法,在算法实现过程中不...
一、FCM算法简介 1、模糊集理论 L.A.Zadeh在1965年最早提出模糊集理论,在该理论中,针对传统的硬聚类算法其隶属度值非0即1的严格隶属关系,使用模糊集合理论,将原隶属度扩展为 0 到 1 之间的任意值,一个样本可以以不同的隶属度属于不同的簇集,从而极大提高了聚类算法对现实数据集的处理能力,由此模糊聚类出现在...
令X = { xi,i = 1,2,…,n} 是一训练样本集,X∈Rp , c 为预定的分类数量,vi ( i = 1,2,…,c) 是第 i 个聚类的中心,uik ( i = 1,2,…,c; k = 1,2,…,n) 为第 k 个样本对 第 i 类的隶属度函数,构成的隶属度矩阵 U 受到以下条件限制: FCM 是一种有目标的模糊聚类算法,其目标...
1 FCM 聚类算法简介 提到聚类算法,通常我们想到的就是 Kmeans、层次聚类等算法,这些算法可以根据样本特征属性将相似的样本都归到某一个样本簇,对于某一个样本来说,其跟样本簇的隶属关系是非 0 即 1 的,这种聚类方法也被称为硬聚类。 除此之外还有一种软聚类方法,使用模糊集合理论,将样本对簇的隶属度扩展为 0...
K-means和FCM模糊聚类算法的一个显著差别在于,K-means聚类是硬聚类(意思是一个样本要么100%属于A,要么100%属于B);而FCM模糊聚类算法则是软聚类(意思是一个样本有一定几率属于A,有一定几率属于B,但总概率为1)。 FCM(Fuzzy c-means)算法的基本过程:
本文就将采用改进Fuzzy C-means算法对基于用户特征的微博数据进行聚类分析。去年,我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于微博用户特征聚类研究的分析应用程序(点击文末“阅读原文”获取完整代码数据)。 首先对聚类分析作系统介绍。其次对改进Fuzzy C-means算法进行文献回顾,对其概况、基本思想、算法进...
本文就将采用改进Fuzzy C-means算法对基于用户特征的微博数据进行聚类分析。 去年,我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于微博用户特征聚类研究的分析应用程序。首先对聚类分析作系统介绍。其次对改进Fuzzy C-means算法进行文献回顾,对其概况、基本思想、算法进行详细介绍,再是应用了改进Fuzzy C-means...
Fuzzy C-means算法概述 Fuzzy C-means算法是聚类算法中主要算法之一,它是一种基于划分的聚类算法,是最为经典的,同时也是使用最为广泛的一种基于划分的聚类算法,它属于基于距离的聚类算法。1967年,J.B.MacQueen提出的Fuzzy C-means算法是目前为止在工业和科学应用中一种极有影响的聚类技术。Fuzzy C-means 算法实现...
摘自:http://ramsey16.net/%E8%81%9A%E7%B1%BB%EF%BC%88%E4%B8%89%EF%BC%89fuzzy-c-means/ 经典k-均值聚类算法的每一步迭代中,每一个样本点都被认为是完全属于某一类别。我们可以放松这个条件,假定每个样本xjxj模糊“隶属”于某一类的。