ex减1的等价无穷小 相关知识点: 试题来源: 解析 (e^x-1)/x=e^ln[(e^x-1)/x]=e^[ln(e^x-1)-lnx] 当x趋近0时候,ln(e^x-1)和lnx分别趋向于零,他们的差也趋向于零,所以e^[ln(e^x-1)-lnx]趋向于1.所以(e^x-1)/x趋向于1,说明是等阶无穷小. 后面那一问一样的道理. ...
ex-1的等价无穷小量是x。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件。以下是等价无穷小量应用的相关介绍:它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值,极限值。极限方法是数学分...
lim (e^x-1)/x (0/0型,适用罗必达)x->0 =lim e^x/1 x->0 =1 所以为等价无穷小 如果不用罗必达,也可令e^x-1=t 则e^x=t+1 x=ln(t+1)x->0 t->0 lim t/ln(t+1)t->0 =lim1/ln(t+1)^1/t t->0 =1 等价无穷小是无穷小的一种。在同一点上,这两个无穷小之...
根据泰勒公式可知在x趋近于0时e^x-1的等价无穷小为x,那么e^x-1-x的等价无穷小是多少呢?... 根据泰勒公式可知在x趋近于0时e^x-1的等价无穷小为x,那么e^x-1-x的等价无穷小是多少呢? 展开 分享 复制链接http://zhidao.baidu.com/question/2011102780251988028 新浪微博 微信扫一扫 举报 你的回答被采纳后...
做过类似的题,尝试回答一下 使用麦克劳林公式展开e^x到二阶然后把“-1-x”项抵消掉得到1/2x²同理 将e^x的二阶展开代入你提的第二个问题 展开后得x²/2-2与x²/2 阶数相同,等价
两个无穷小量是等价无穷小,就可以互相替换
3 lim x->0 (e^x-e^sinx)/x^3 等价无穷小的代换查了很多把我搞晕了,有人说等价无穷小只能做乘除不能 加减,晕了!假如e^x 可以约等于 1+x e^sinx可以约等于 1+sinx 那么 sinx不是还和x是等价无穷小 e^sinx e^x 当然这样上面就是0了而不是极限是0...把我将明白再加分 反馈...
ex减1的等价无穷小 相关知识点: 试题来源: 解析 (e^x-1)/x=e^ln[(e^x-1)/x]=e^[ln(e^x-1)-lnx] 当x趋近0时候,ln(e^x-1)和lnx分别趋向于零,他们的差也趋向于零,所以e^[ln(e^x-1)-lnx]趋向于1.所以(e^x-1)/x趋向于1,说明是等阶无穷小. 后面那一问一样的道理....