Encoder-Decoder架构同时包含编码器和解码器部分,通常用于序列到序列(Seq2Seq)任务,如机器翻译、文本摘要等。这种架构能够同时处理输入和输出序列,实现复杂的序列转换任务。 工作原理:Encoder-Decoder架构的编码器负责将输入序列编码为固定长度的上下文向量,解码器则根据这个上下文向量生成输出序列。在Transformer模型中,编码器...
GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-…
大模型结构 下面这张图是一个大模型的一个分布树,纵轴代表大模型的发布年份和大模型输入token数,这个图很有代表性,每一个分支代表不同的模型架构,今天以图中根系标注的三大类展开:Encoder-only、Encoder-Decoder、Decoder-only;我们分别来看一下这几个架构的特点和原理吧。Encoder...
在自然语言处理(NLP)的广阔领域中,Encoder-Decoder和Decoder-Only模型作为两种重要的神经网络架构,各自扮演着不可或缺的角色。本文将从模型结构、应用场景及技术优势三个方面,对这两种模型进行深度解析。 一、模型结构差异 Encoder-Decoder模型: 结构概述:Encoder-Decoder模型由两部分组成:编码器(Encoder)和解码器(Decoder...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
在自然语言处理领域,大语言模型作为核心技术之一,正引领着人工智能的新一轮变革。这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。
Decoder-Only 架构,也被称为生成式架构,仅包含解码器部分。它通常用于序列生成任务,如文本生成、机器翻译等。这种架构的模型适用于需要生成序列的任务,可以从输入的编码中生成相应的序列。同时,Decoder-Only 架构还有一个重要特点是可以进行无监督预训练。在预训练阶段,模型通过大量的无标注数据学习语言的统计模式和语义...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
在原始的 Transformer 模型中(例如在机器翻译任务中),Encoder 和 Decoder 的注意力掩码策略有所不同,但并不是完全按照 BERT 和 GPT 的双向/单向掩码策略区分的。以下是详细解释: 1. Transformer 中的 Encoder 和 Decoder 的注意力机制
预训练与应用无缝对接:由于解码器没有下文依赖,使得预训练和下游任务之间的协作更加高效。 理论上的完整性:解码器的结构理论上支持更为完整的序列处理。 潜力无限:有理由相信,未来Decoder-only可能逐步取代encoder-decoder的某些应用场景。在深入研究中,我们看到了如下的观点和实例:知乎讨论:深入...