Decoder-Only GPT系列 文本生成、机器翻译 生成能力强,擅长创造性写作 无法直接处理输入编码 Encoder-Only BERT系列 文本分类、情感分析 语义理解能力强,处理速度快 无法生成输出序列 Encoder-Decoder T5、盘古NLP 机器翻译、对话生成 能处理输入输出不一致的任务 模型复杂度高,计算资源消耗大 五、结语 大语言模型的三大...
左图为encoder-only,输出token都能看到所有输入token。例如y_1这一行可以看到x_1 \sim x_5输入 中图为decoder-only,输出token只能看到历史的输入token。例如y_3这一行只能看到x_1 \sim x_3 输入,x_4和x_5并不能看到 右图为encoder-decoder,前k个输出token可以看到所有k个输入token,从k+1的输出token开始...
Decoder-Only模型通过其单向注意力机制和自回归生成方式,非常适合处理这类任务。 参数效率与灵活性:Decoder-Only模型在参数效率上通常优于Encoder-Decoder模型,因为它不需要同时训练两个模块。此外,Decoder-Only模型在预训练和微调方面也更具灵活性,可以方便地应用到不同的下游任务中。 三、技术优势与限制 Encoder-Decode...
下面这张图是一个大模型的一个分布树,纵轴代表大模型的发布年份和大模型输入token数,这个图很有代表性,每一个分支代表不同的模型架构,今天以图中根系标注的三大类展开:Encoder-only、Encoder-Decoder、Decoder-only;我们分别来看一下这几个架构的特点和原理吧。Encoder...
其次,Decoder only结构比Encoder-Decoder结构更加简单,训练中Decoder only结构只需要一次前向传播,而Encoder-Decoder结构则需要两次前向传播。所以对比之下,自然计算效率更高。同时,推理过程中,Casual decoder-only支持一直复用KV-Cache,对多轮对话更友好,因为每个token的表示只和它之前的输入有关,而encoder-decoder...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
1. Decoder-only 和 Encoder-Decoder 两种框架的对比 Decoder-only 模型带来了 3.9 个 BLEU 的显著改进,当用 U2S 代替声码器合成语音时,缩小了性能差距,证明了 U2S 后端的鲁棒性。2. 多任务训练 U-XLM 在涉及的多个任务(包括 S2ST、ASR、ST、MT 和 TTS)上都取得了可观的性能,验证了 Decoder-only ...
去年一张“大语言模型进化树”动图在学术圈疯转,模型架构还只有三大类:Decoder-Only、Encoder-Only、Encoder-Decoder。那么这个新出的Decoder-Decoder架构到底长啥样?嗯,如网友所言,要读的论文又增加了。话不多说,一起来看。打破Decoder-Only YOCO整体架构设计如下,分为自解码器(Self-Decoder)和交叉解码器(...
1 Encoder-Only架构 Encoder-Only 架构,也被称为单向架构,仅包含编码器部分。它主要适用于不需要生成序列的任务,只需要对输入进行编码和处理的单向任务场景,如文本分类、情感分析等。这种架构的代表是 BERT 相关的模型,例如 BERT、RoBERT 和 ALBERT 等。
在自然语言处理领域,大语言模型作为核心技术之一,正引领着人工智能的新一轮变革。这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。