Encoder-Decoder 的缺陷 Attention 解决信息丢失问题 Encoder-Decoder 是NLP领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。Encoder-Decoder是一种常用的模型架构,广泛应用于序列到序列(Seq2seq)学习问题中。它由两个主要组件——编码器(Encoder)和解码器(Decoder)组成。 编码器负责把输入序列转换为一个...
Encoder-decoder 很适合像图像分割这种输出结果保留原尺寸的 pixel-wise 分类任务,像 U-Net 就是图像领...
尽管Bert论文没有提,但是稍微动动脑子就可以想到,其实对于机器翻译或者文本摘要,聊天机器人这种生成式任务,同样可以稍作改造即可引入Bert的预训练成果。只需要附着在S2S结构上,encoder部分是个深度Transformer结构,decoder部分也是个深度Transformer结构。根据任务选择不同的预训练数据初始化encoder和decoder即可。这是相当直观的...