【基于EMD-KPCA-LSTM经验模态分解核主成分分析长短期记忆神经网络多变量时间序列预测】基于EMD-KPCA-LSTM经验模态分解核主成分分析长短期记忆神经网络多变量时间序列预测,多图输出、多指标输出(MAE、MAPE、RMSE、R2),含EMD-KPCA-LSTM、EMD-LSTM、LSTM回归预测对比,多输入单输出。 EMD-KPCA-LSTM多变量时序源码链接1:...
摘要:本发明公开了一种基于EMD和多变量LSTM相结合的服务质量预测方法,包括1:对Web服务历史调用记录进行数据清洗,检测数据集中Web服务质量的缺失值、异常值;2:使用一种基于数据的填补算法补全缺失值和异常值,构建完整有效的服务质量时间序列;3:对时间序列进行数据变换;4:利用EMD方法将服务质量时间序列分解为多个本征模...
本发明公开了一种基于EMD和多变量LSTM相结合的服务质量预测方法,包括1:对Web服务历史调用记录进行数据清洗,检测数据集中Web服务质量的缺失值、异常值;2:使用一种基于数据的填补算法补全缺失值和异常值,构建完整有效的服务质量时间序列;3:对时间序列进行数据变换;4:利用EMD方法将服务质量时间序列分解为多个本征模函数和...
1.一种基于EMD-PCA-LSTM的多变量输入光伏功率预测方法,其特征在于, 步骤一:获取光伏电站实际生产中逆变器下的列阵光伏功率的实测功率时间序列数据,以及光伏阵区对应的环境检测仪采集的太阳辐照度、相对湿度、空气温度、组件温度、大气压力5种环境序列数据,组成光伏功率预测的实测样本数据集; 步骤二:对光伏功率预测的实...
参阅图1,本发明提供了一种基于emd-pca-lstm的多变量输入光伏功率预测方法,包括步骤:步骤一:获取光伏电站实际生产中逆变器下的光伏功率的实测功率时间序列数据,以及光伏阵区对应的环境检测仪采集的太阳辐照度、相对湿度、空气温度、组件温度、大气压力5种环境序列数据,组成光伏功率预测的实测样本数据集;步骤二:对光伏...
57)摘要本发明公开了一种基于EMD -PCA -LSTM的多变量输入光伏功率预测方法,利用经验模态分解方法将5种环境序列进行分解,得到不同时间尺度下的本征模态分解和剩余分量,将环境序列分解为各种不同的波动序列;利用主成分分析方法筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由EMD分解得到的不同波动...
摘要 本发明公开了一种基于EMD‑PCA‑LSTM的多变量输入光伏功率预测方法,利用经验模态分解方法将5种环境序列进行分解,得到不同时间尺度下的本征模态分解和剩余分量,将环境序列分解为各种不同的波动序列;利用主成分分析方法筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由EMD分解得到的不同波动序列的...