3,3>{typedeftypenameOther::ScalarScalar;template<classDerived>EIGEN_DEVICE_FUNCstaticinlinevoidrun(QuaternionBase<Derived>&q,constOther&a_mat){consttypenameinternal::nested_eval<Other,2>::typemat(a_mat);EIGEN_USING_STD(sqrt)// This algorithm comes from "Quaternion Calculus and Fast Animation"...
四元素的共轭就是逆 Eigen::Quaternion<T> q_a_inverse = q_a.conjugate();//求共轭,即求逆 七、输出旋转矩阵 要注意的是,只有单位四元数才表示旋转矩阵,所以要先对四元数做单位化 q.normalized(); //important Matrix3d R=q.toRotationMatrix(); 八、求偏导 a、q对时间t求导 b、q对δθ求导 c、...
可以使用默认的构造函数,不执行动态分配内存,也没有初始化矩阵参数: Matrix3f a;// a是3-by-3矩阵,包含未初始化的 float[9] 数组Eigen::Matrix3d//旋转矩阵(3*3)Eigen::AngleAxisd//旋转向量(3*1)Eigen::Vector3d//欧拉角(3*1)Eigen::Quaterniond//四元数(4*1)Eigen:...
Quaterniond是Eigen库中用于表示四元数的类,四元数是一种数学结构,通常用于表示和计算三维空间中的旋转。在计算机图形学和机器人学中,四元数被广泛用于表示旋转操作,因为它可以有效地避免万向锁问题,并且比欧拉角更稳定。在Eigen库中,四元数可以用Eigen::Quaterniond(double类型)或者Eigen::Quaternionf(float类型)表示...
Eigen::Quaterniond q_conjugate = q.conjugate(); Eigen::Quaterniond q_inverse = q.inverse(); ``` 4. **使用四元数旋转向量** 你可以使用四元数来旋转3D向量。这通常比使用旋转矩阵或欧拉角更有效率,也更稳定: ```cpp Eigen::Quaterniond q; Eigen::Vector3d v; // ...初始化q和v Eigen::Ve...
() << endl; // 由旋转向量构造四元数 Quaterniond q = Eigen::Quaterniond(rotation_vector); cout << "quaternion = \n" << q.coeffs() << endl; // 由旋转矩阵构造四元数 q = Eigen::Quaterniond(rotation_matrix); cout << "quaternion = \n" << q.coeffs() << endl; v_rotated = ...
Quaternion spacegeneral principal component algorithmquaternion self-conjugate matrixclassificationcolor face recognitionConsidering the difficulty of obtaining orthogonal eigenvector set of quaternion matrix,a novel obtaining method is proposed in this paper.The main idea of this method can be described as ...
std::cout<<"Matrix4d:: \n"<< T4x4.inverse() <<"\n";///Eigen::Quaterniond q_con =q1.conjugate(); Eigen::Matrix3d R2(q_con); std::cout<<"Matrix3d:: \n"<< R2 <<"\n";///return0; }
Based on article[1] ,this paper presents some inequalities about eigenvalue product ofany positive definte self-conjugate quaternion matrices wi th its submatrices, Ouing to the specialityand complexity of the algebraic theory of quaternion, these results will be as important as those inarticle[1...
Eigen::Quaterniond //四元数(4*1) Eigen::Isometry3d //欧式变换矩阵(4*4) Eigen::Affine3d //放射变换矩阵(4*4) Eigen::Projective3d //射影变换矩阵(4*4) MatrixXf b; // b是动态矩阵,当前大小为 0-by-0, 没有为数组的系数分配内存 ...