F² = (-∞,+∞)∫e^(-x²)dx * (-∞,+∞)∫e^(-y²)dy = [D]∫∫e^(-x²)*dx * e^(-y²)*dy = [D]∫∫e^[-(x²+y²)]*dx *dy 式中积分域D = {(x,y)|x ∈(-∞,+∞),y∈(-∞,+∞)} 对x,y进行极坐标变换,则...
设exp[x^(-2)]=t 则-2[x^(-3)]*exp[x^(-2)]=-2[x^(-3)]t 两边积分 左=exp[x^(-2)]=t 右=[x^(-2)]t+2[x^(-3)]*∫ t ∫ t=[1-x^(-2)]t/{2[x^(-3)]}=(tx^3)/2-xt/2=(t/2)(x^3-x)x在[-1,0)和(0,2]分段积分时,会发现正好正负值抵消,...
不妨取a→+∞ ∫xe^(-x^2)dx在(0,a)的定积分=-1/2e^(-x^2)](0,a)所以所求是lim(a→+∞)[-1/2e^(-x^2)](0,a)=lim(a→+∞)[-1/2e^(-a^2)+1/2]=1/2
正文 1 如果积分限是-∞到∞,∫e^(-x^2)dx =√π 。若积分限0到∞,根据偶函数的性质可知,∫e^(-x^2)dx =√π/2。不定积分的公式:1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + ...
从0到正无穷对e的-x^2次方积分解答过程如下:在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F,即F’=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。不定积分的求解方法:1、积分公式法:直接利用积分公式求出不定积分。2、换元积分法:换元积分法...
从0到正无穷对e的-x^2次方积分是(√π)/2。f(x)在(-∞,+∞)上的积分为1,且关于y轴对称,即:(0,+∞)上的积分为1/2,那么(1/√π)e^(-x^2)在(0,+∞)上的积分为1/2。由于(1/√π)是常数,则积分结果就是(√π)/2。不定积分的求解方法 1、积分公式法。直接利用...
如果积分限是-∞到∞,∫e^(-x^2)dx =√π 。若积分限0到∞,根据偶函数的性质可知,∫e^(-x^2)dx =√π/2。除了黎曼积分和勒贝格积分以外,还有若干不同的积分定义,适用于不同种类的函数。定积分求值方法:Step1:分析积分区间是否关于原点对称,即为[-a,a],如果是,则考虑被积函数的...
e的负x2次方积分公式是一个常见的高等数学积分公式,它的形式如下: ∫e^(-x^2) dx = (根号π)/2 这个公式有时也被称为高斯积分公式,因为它与高斯函数有关。在这个公式中,e是自然对数的底数,x是自变量,x^2表示x的平方,根号π表示π的正平方根。 这个公式的意义是,如果我们要求函数e的负x^2次方的积分...
e的负x的2次方的积分是什么 简介 具体如下:{(-∞到∞)∫e^(-x²)dx}²= {(-∞到∞)∫e^(-x²)dx}*{(-∞到∞)∫e^(-y²)dy}= (θ,0到2π)(r,0到∞)∫∫re^(-r²)drdθ= {(θ,0到2π)∫dθ}*(r,0到∞)∫2e^(-r²)dr²= 2π所以(-∞到∞)∫e^(-x²...
对于e的负x平方的一半的积分,即 (-∞到∞)∫e^(-x²/2)dx,其结果是原积分的两倍,即 2√(π)这个结果与泊松积分相关,但要注意,泊松分布并不等同于上述积分的一半,它实际上代表了一种概率分布,常用于描述随机事件在特定时间或空间内的频率,例如交通路口事故次数、电话呼叫次数等。泊松...