e的2x次方的二阶导数e的2x次的导数是:2e^2x。 方法1: (e^2x)'=e^2x *(2x)'=2e^2x。(e^2x是一个复合函数,包含e^u,u=2x两个函数) 方法2: (e^2x)'=(e^xe^x)'=(e^x)'e^x+e^x(e^x)'=2e^2x。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站...
y'=2e^2x+2ex^(2e-1) y''=4e^2x+2e(2e-1)x^(2e-2) y的二阶导数加y等于e的-2x次方,求通解 解:∵微分方程为y"+y=e^(-2x) ∴设方程的特征值为t,特征方程为 t²+1=0,t=±1,特征根为sinx、 cosx 又∵方程的右式为e^(-2x) ∴设方程的... 2023陕西二建报考条件学历专业要求-各省统一...
e^2x=d(dy/dx)/dx=d(de^2x/dx)/dx=d(2e^2x)/dx=2*d(e^2x)/dx=2*2e^2x=4e^2x
1、先求一阶导数,可以将函数看成是由u=a·x,v=e^(2x),则运用导数的乘法运算公式进行计算,即 u'=a,v'=2e^(2x)y'=(uv)'=u'v+uv'=a·e^(2x)+2a·x·e^(2x)2、再求二阶导数,方法同上 y"=[a·e^(2x)+2a·x·e^(2x)]'=[a·e^(2x)]'+[2a·x·e^(2x)]'=2a...
根据公式:(UV)'=U'V+V'U。所以:
如上图所示。
y'=-sin3x*(3x)'*e^(2x)+cos3x*e^(2x)*(2x)=(2cos3x-3sin3x)e^(2x)所以y''=(2cos3x-3sin3x)'*e^(2x)+(2cos3x-3sin3x)*[e^(2x)]'=(-2sin3x*3-3cos3x*3)*e^(2x)+(2cos3x-3sin3x)*e^(2x)*2 =(-12sin3x-5cos3x)*e^(2x)...
y'=-sin3x*(3x)'*e^(2x)+cos3x*e^(2x)*(2x)=(2cos3x-3sin3x)e^(2x)所以y''=(2cos3x-3sin3x)'*e^(2x)+(2cos3x-3sin3x)*[e^(2x)]'=(-2sin3x*3-3cos3x*3)*e^(2x)+(2cos3x-3sin3x)*e^(2x)*2 =(-12sin3x-5cos3x)*e^(2x),5,解:y=cos3xe^2x y...
前面是指数函数,后面是幂函数 一阶导数等于2倍的e的2x次方+2e倍的x的(2e-1)次方 二阶导数等于4倍的e的2x次方+(2e)(2e-1)倍的x的(2e-2)次方 采纳哦
如图