在Python的数据分析库Pandas中,merge()、set_index()、drop_duplicates()和tolist()等函数是常用的数据处理工具。这些函数能帮助我们高效地处理数据,提取所需信息,并进行数据的清洗和整理。下面我们将逐一介绍这些函数的用法和注意事项。一、merge()函数merge()函数用于根据指定的键将两个DataFrame进行合并。它返回一...
平时我们的操作中可能只是简单地将重复的行删除掉,不需要标记再筛选,太麻烦。那就使用drop_duplicates。 这样门店重复的就直接删除了。 跟duplicated一样,将列名放进括号里面可以作为判断重复的依据; 如果要保留后一个重复值,需要加参数keep='last'。 而如果想直接将原数据修改,需要加参数inplace=True。发布...
在Python中,drop_duplicates是Pandas库中的一个非常实用的方法,用于从DataFrame中删除重复的行。以下是关于drop_duplicates方法的详细解释和示例: 1. drop_duplicates方法的基本含义 drop_duplicates方法用于删除DataFrame中的重复行,可以根据指定列来判断重复,也可以保留重复行中的第一条或最后一条。 2. drop_duplicates...
python的drop_duplicates函数 python的drop_duplicates函数 Python的drop_duplicates函数是用来去除DataFrame中的重复行的。它可以按照所指定的列进行去重,并且可以选择保留第一次出现的重复行或者保留最后一次出现的重复行。具体使用方法是在DataFrame对象上调用drop_duplicates方法,传入所需要去重的列名,以及keep参数来指定...
Python 之 Pandas merge() 函数、set_index() 函数、drop_duplicates() 函数和 tolist() 函数 import numpy as npimport pandas as pd 为了方便维护,数据在数据库内都是分表存储的,比如用一个表存储所有用户的基本信息,一个表存储用户的消费情况。
python drop 条件 python中drop_duplicates,pandas主要有三个用来删除的函数,.drop()、.drop_duplicates()、.dropna()。总结如下.drop()删除行、列.drop_duplicates()删除重复数据.dropna()删除空值(所在行、列)为避免篇幅太长,将其分为两部分,不想看参数介绍的可以直
python去重和保留重复值⽅法duplicated和drop_duplicates import pandas as pd 1.duplicated 保留重复值 源码默认标记重复的第⼀个为不重复第,duplicated(keep='first')# duplicated 标记重复值,若想第⼀次出现和最后⼀次出现不标记那么在参数keep填充相应的参数,如果想标记全部出现的重复值,那么keep=False ani...
drop_duplicates方法实现对数据框DataFrame去除特定列的重复行,返回DataFrame格式数据。 一、使用语法及参数 使用语法: DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False) 参数: subset -- 指定特定的列 默认所有列 ...
>>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 例3:根据brand和style两列进行去重,保留最后一次出现的行。 >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Ind...
drop_duplicates 去除重复值 源码默认保留第一个,可用inplace 直接修改数据源drop_duplicates(keep='first', inplace=False) # drop_duplicates 去除重复值,若想保留第一次出现或者保留最后一次出现,那么在参数keep填充相应的参数 animals_d1 = animals.drop_duplicates(keep='first') ...