一、drop_duplicates函数介绍 drop_duplicates函数可以按某列去重,也可以按多列去重。具体语法如下: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 DataFrame.drop_duplicates(subset=None,keep='first',inplace=False) 代码解析: DataFrame:待去重的数据框。 subset:用来指定特定的列,根据指定的列对数据框去重。
在Python中,drop_duplicates是Pandas库中的一个非常实用的方法,用于从DataFrame中删除重复的行。以下是关于drop_duplicates方法的详细解释和示例: 1. drop_duplicates方法的基本含义 drop_duplicates方法用于删除DataFrame中的重复行,可以根据指定列来判断重复,也可以保留重复行中的第一条或最后一条。 2. drop_duplicates...
#默认根据所有的列,进行删除 newDF=df.drop_duplicates()#当然也可以指定某一列,进行重复值处理 newDF=df.drop_duplicates('id') 2、缺失值处理 dropna函数作用:去除数据结构中值为空的数据。 dropna() newdf=df.dropna() 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from pandasimportread_csv df=...
df2.drop_duplicates('a') #返回删除重复记录后的结果 df2.drop_duplicates('a', keep='last') df2.drop_duplicates('a', keep=False) 此外,还可以传递列的列表以识别重复。 df2.duplicated(['a', 'b']) # 要求两列都重复 df2.drop_duplicates(['a', 'b']) 要按索引值删除重复项,使用Index.d...
duplicated()方法用于标记是否有重复值。 drop_duplicates()方法用于删除重复值。 它们的判断标准是一样的,即只要两条数中所有条目的值完全相等,就判断为重复值。 1.2.2 duplicated()方法的语法格式 subset:用于识别重复的列标签或列标签序列,默认识别所有的列标签。 keep:删除重复项并保...
pandas主要有三个用来删除的函数,.drop()、.drop_duplicates()、.dropna()。总结如下 .drop()删除行、列 .drop_duplicates()删除重复数据 .dropna()删除空值(所在行、列) 为避免篇幅太长,将其分为两部分,不想看参数介绍的可以直接看实例。 本篇介绍.drop_duplicates(), df.dropna ...
drop_duplicates()方法在处理大型数据集时可能会比较耗时,因此请考虑在适当的时候使用。 如果你的DataFrame包含NaN值,并且你希望将NaN视为相同的值进行去重,pandas默认就是这样处理的。 通过以上步骤,你应该能够轻松地在Python中使用pandas库对DataFrame进行去重操作。无论是处理小型数据集还是大型数据集,pandas都提供了强...
python的drop_duplicates函数 python的drop_duplicates函数 Python的drop_duplicates函数是用来去除DataFrame中的重复行的。它可以按照所指定的列进行去重,并且可以选择保留第一次出现的重复行或者保留最后一次出现的重复行。具体使用方法是在DataFrame对象上调用drop_duplicates方法,传入所需要去重的列名,以及keep参数来指定...
drop_duplicates()方法可以帮助我们去除DataFrame中重复的行,并返回一个新的DataFrame。示例代码:import pandas as pdmy_data = {'col1': [1, 2, 2, 3, 4, 4, 5], 'col2': ['a', 'b', 'b', 'c', 'd', 'd', 'e']}df = pd.DataFrame(data=my_data)df = df.drop_duplicates()...
3 drop_duplicates函数简介 3.1 构建学习数据 3.2 去重方法 3.3 reset_index函数重新设置索引 1 drop函数简介 drop函数:用来删除数据表格中的列数据或行数据 df.drop(labels=None,axis=0 ,index=None ,columns=None ,inplace=False) 1. 2. 3. 4.