生物信息遇上Deep learning(13): scVAE: Variational auto-encoders for single-cell gene expression data 背景 使用改进的变分自编码分析单细胞RNA数据,预估对应的基因表达水平和细胞的隐式表达 motivation:目前大多的计算框架流程复杂,需要专业分析,而且大多不基于原始raw count数据,生成式模型会更加适合RNA-seq数据生...
可变剪切的RNA-Seq分析最大的局限在于非常依赖测序深度; 作者在这里提出DARTS, 通过整合先验的RNA-Seq证据以及深度学习预测结果来推断不同生物学样本中的差异可变剪切; DARTS利用公共数据库中的大量的RNA-Seq数据通过深度学习提供可变剪切调节的knowledge base, 因此可以用来帮助研究人员即使在中等测序深度的情况下更好的...
Deep learningRNA-SeqPersonalized medicineMachine LearningBiomarkers discoveryDeep learning models are currently being applied in several areas with great success. However, their application for the analysis of high-throughput sequencing data remains a challenge for the research community due to the fact ...
这篇论文研究的是Single-cell RNA sequencing (scRNA-seq) denoising, 也就是单细胞RNA测序的降噪,由于数据扩增和数据丢失等问题,会干扰scRNA-seq的数据分析,因此需要有降噪技术用于稀疏的scRNA-seq数据,作者提出了一种deep count autoencoder network (DCA),通过negative binomial noise model with or without zero-...
科学研究院精准健康研究所智能算法团队在知名学术杂志《遗传学前沿》(Frontiers in Genetics)在线发表了题为“deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors”的研究论文,文章提出了一种新的基于深度学习模型进行单细胞RNA测序数据(scRNA-seq)批次效应校正...
科学研究院精准健康研究所智能算法团队在知名学术杂志《遗传学前沿》(Frontiers in Genetics)在线发表了题为“deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors”的研究论文,文章提出了一种新的基于深度学习模型进行单细胞RNA测序数据(scRNA-seq)批次效应校正...
科学研究院精准健康研究所智能算法团队在知名学术杂志《遗传学前沿》(Frontiers in Genetics)在线发表了题为“deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors”的研究论文,文章提出了一种新的基于深度学习模型进行单细胞RNA测序数据(scRNA-seq)批次效应校正...
Here, we present HE2RNA, a deep-learning algorithm specifically customized for the prediction of gene expression from WSI (Fig.1). For training our model, we collected WSIs and their corresponding RNA-Seq data from The Cancer Genome Atlas (TCGA) public database. We then investigated how HE2...
该研究以「DeepCCI: a deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data」为题,于 2023 年 9 月 23 日发布在《Bioinformatics》。 多细胞生命依赖于细胞活动的一致性,而细胞活动又取决于不同细胞类型之间的细胞间相互作用(CCI)。单细胞 RNA 测序(scRNA-seq)...
We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as ...