一、基于原生Python实现决策树(Decision Tree) 决策树是一种基本的分类和回归方法,可以用于二元和多元分类以及连续和离散的数值预测。决策树的构建过程就是递归地选择最优的特征并根据该特征对数据进行分裂的过程,直到满足某种条件为止,然后构建出一颗决策树。在进行分类预测时,对输入数据从根节点开始沿着特定的路径向下...
决策树(Decision Tree)模型在复杂的决策情况中,往往需要多层次或多阶段的决策。当一个阶段决策完成后,可能有m种新的不同自然状态发生;每种自然状态下,都有m个新的策略可选择,选择后产生不同的结果并再次面…
之后递归构造决策树: def createTree(dataSet,labels):classList = [example[-1] for example in dataSet] #保存标签if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止划分return classList[0] #返回出现次数最多的标签if len(dataSet[0]) == 1: #遍历完所有特征时返回出现...
也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。 CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。
Python机器学习算法 — 决策树(Decision Tree) 决策树 -- 简介 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树是一种有监管学习的分类方法。决策树的生成算法有 ID3 、...
X_train,X_test,y_train,y_test=train_test_split(X,y)#用信息增益启发式算法建立决策树pipeline=Pipeline([('clf',DecisionTreeClassifier(criterion='entropy'))]) parameters={'clf__max_depth': (150, 155, 160),'clf__min_samples_split': (1, 2, 3),'clf__min_samples_leaf': (1, 2, 3...
python decisiontree 调参 Python中的决策树调参指南 决策树是一种重要的机器学习算法,广泛应用于分类和回归问题。它决定了数据的分裂方式,并以树的形式展示决策过程。然而,构建高效的决策树模型并不是一件简单的事,其中调参(调整参数)是至关重要的一步。本文将详细介绍如何在Python中使用sklearn库调节决策树的相关...
优点:直观,便于理解,小规模数据集有效 缺点:1.处理连续变量不好; 2.类别较多时,错误增加的比较快; 3.可规模性一般。 参考:机器学习经典算法详解及Python实现–决策树(Decision Tree) 参考: <<统计学习方法— 李航>> 机器学习系列之机器学习之Validation(验证,模型选择) 机器学习系列之...
但是Adaboost的stump仅仅是按照准确率来了,而decision tree的标准是purity,纯净度。意思就是熵了。purifying的核心思想就是每次切割都尽可能让左子树和右子树中同类样本占得比例最大或者yn都很接近(regression),即错误率最小。比如说classifiacation问题中,如果左子树全是正样本,右子树全是负样本,那么它的纯净度就...
机器学习经典算法详解及Python实现–决策树(Decision Tree) _ 数盟