一、基于原生Python实现决策树(Decision Tree) 决策树是一种基本的分类和回归方法,可以用于二元和多元分类以及连续和离散的数值预测。决策树的构建过程就是递归地选择最优的特征并根据该特征对数据进行分裂的过程,直到满足某种条件为止,然后构建出一颗决策树。在进行分类预测时,对输入数据从根节点开始沿着特定的路径向下...
之后递归构造决策树: def createTree(dataSet,labels):classList = [example[-1] for example in dataSet] #保存标签if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止划分return classList[0] #返回出现次数最多的标签if len(dataSet[0]) == 1: #遍历完所有特征时返回出现...
也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。 CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。
nodedict[cur_feaname]["<"] = buildtree(data_less,label_less) nodedict[cur_feaname][">"] = buildtree(data_greater,label_greater) return nodedict #testcode: #mytree = buildtree(traindata,trainlabel) #print mytree Result: mytree就是我们的结果,#1表示当前使用第一个feature做分割,'<'和'...
参考链接: “RuntimeError: Make sure the Graphviz executables are on your system's path” after installing Graphviz 2.38 参考文献: [1]DecisionTree决策树大全原文链接:http://ihoge.cn/2018/DecisionTree.html [2]【机器学习】决策树(上)——从原理到算法实现原文链接:https://blog.csdn.net/fengyanqing...
Python机器学习算法 — 决策树(Decision Tree) 决策树 -- 简介 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树是一种有监管学习的分类方法。决策树的生成算法有 ID3 、...
优点:直观,便于理解,小规模数据集有效 缺点:1.处理连续变量不好; 2.类别较多时,错误增加的比较快; 3.可规模性一般。 参考:机器学习经典算法详解及Python实现–决策树(Decision Tree) 参考: <<统计学习方法— 李航>> 机器学习系列之机器学习之Validation(验证,模型选择) 机器学习系列之...
python 决策树代码 DecisionTreeRegressor 决策树的python代码 1. 简介 决策数(Decision Tree)在机器学习中是比较常见的一种算法,属于监督学习中的一种。 算法流程如图: 具体算法可以详见下方参考 有空再做详解 2.代码实现 """ Created on Thu Nov 28 14:01:04 2019...
python treenode类的作用 python decision tree 决策树(Decision tree)是一种特殊的树结构,由一个决策图和可能的结果(例如成本和风险)组成,用来辅助决策。决策树仅有单一输出,通常该算法用于解决回归和分类问题。 机器学习中,决策树是一个预测模型,树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,...
Decision_tree-python 决策树分类(ID3,C4.5,CART) 三种算法的区别如下: (1) ID3算法以信息增益为准则来进行选择划分属性,选择信息增益最大的; (2) C4.5算法先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的; (3) CART算法使用“基尼指数”来选择划分属性,选择基尼值最小的属性作为划分...