一、基于原生Python实现决策树(Decision Tree) 决策树是一种基本的分类和回归方法,可以用于二元和多元分类以及连续和离散的数值预测。决策树的构建过程就是递归地选择最优的特征并根据该特征对数据进行分裂的过程,直到满足某种条件为止,然后构建出一颗决策树。在进行分类预测时,对输入数据从根节点开始沿着特定的路径向下...
之后递归构造决策树: def createTree(dataSet,labels):classList = [example[-1] for example in dataSet] #保存标签if classList.count(classList[0]) == len(classList): #如果类别完全相同则停止划分return classList[0] #返回出现次数最多的标签if len(dataSet[0]) == 1: #遍历完所有特征时返回出现...
决策树(Decision Tree)模型在复杂的决策情况中,往往需要多层次或多阶段的决策。当一个阶段决策完成后,可能有m种新的不同自然状态发生;每种自然状态下,都有m个新的策略可选择,选择后产生不同的结果并再次面…
X_train,X_test,y_train,y_test=train_test_split(X,y)#用信息增益启发式算法建立决策树pipeline=Pipeline([('clf',DecisionTreeClassifier(criterion='entropy'))]) parameters={'clf__max_depth': (150, 155, 160),'clf__min_samples_split': (1, 2, 3),'clf__min_samples_leaf': (1, 2, 3...
机器学习之决策树(Decision Tree)及其Python代码实现 决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立...
Python机器学习算法 — 决策树(Decision Tree) 决策树 -- 简介 决策树(decision tree)一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树是一种有监管学习的分类方法。决策树的生成算法有 ID3 、...
Python实现决策树(Decision Tree)分类 https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/中给出了CART(Classification and Regression Trees,分类回归树算法,简称CART)算法的Python实现,采用的数据集为Banknote Dataset,这里在原作者的基础上,进行了略微改动,使其可以直接执行,code如下:...
优点:直观,便于理解,小规模数据集有效 缺点:1.处理连续变量不好; 2.类别较多时,错误增加的比较快; 3.可规模性一般。 参考:机器学习经典算法详解及Python实现–决策树(Decision Tree) 参考: <<统计学习方法— 李航>> 机器学习系列之机器学习之Validation(验证,模型选择) 机器学习系列之...
python DecisionTreeClassifier 数据格式 使用Python 中的 DecisionTreeClassifier 的指导 在机器学习中,决策树是一种常见的监督学习模型,通常用于分类任务。今天,我们将一起学习如何使用 Python 中的DecisionTreeClassifier,并详细了解数据的准备、模型的训练和预测的过程。接下来,我们将分步介绍如何实现这一过程。
预览图片所展示的格式为文档的源格式展示 机器学习经典算法详解及Python实现–决策树(DecisionTree)_数盟 预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销...