2.R语言中基于混合数据抽样(MIDAS)回归的HAR-RV模型预测GDP增长 3.波动率的实现:ARCH模型与HAR-RV模型 4.R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测 5.GARCH(1,1),MA以及历史模拟法的VaR比较 6.R语言多元COPULA GARCH 模型时间序列预测 7.R语言基于ARMA-GARCH过程的VAR拟合和预测 8.matlab预...
对于模拟过程,我们将使用相同的包估计参数,函数 .我们有两个模拟序列,然后我们假设它们遵循 CCC-GARCH(1,1) 以下过程 估算结果为: DCC-GARCH DCC-GARCH 模型是 CCC-GARCH 情况的推广,也就是说,我们有 R matris 不一定是固定的,也就是说它随时间变化: 模拟示例 为了模拟 DCC-GARCH 过程,我们考虑比较性能。
DCC-GARCH模型公式看起来很复杂,一堆的符号和参数。比如说,有均值方程、方差方程,还有相关系数的方程。 咱们就拿股票市场来举个例子吧。就像前段时间,我关注的几只股票,它们的价格波动那叫一个让人捉摸不透。有时候一只涨得欢,另一只却跌得惨。这时候用DCC-GARCH模型公式就能试着分析分析,看看它们之间的相关关系...
所以变化一下基础版的公式变成ρ(r1,r2)=E(ϵ1,ϵ2)E(ϵ12)E(ϵ22)。
因此基于DCC-GARCH(1,1)模型,两个变量的动态相关系数 ρAB,t 的计算公式为: ρAB,t=1−θ1−θ2qA,B¯+θ2qAB,t−1+θ1εA,t−1εB,t−1[1−θ1−θ2qA,A¯+θ2qAA,t−1+θ1εA,t−12]1/2[1−θ1−θ2qB,B¯+θ2qBB,t−1+θ1εB,t−12]1/2 (...
第一种类似RM方法, 通过指数平滑的方法对对相关系数建模,后文统称为DCC-RM模型,公式来自Engle的paper,需要文献在后台回复"VaR3",公式中的 即为前文中的z,也就是标准化收益。 另一种方法类似Garch(1,1)模型,后文统称为DCC-Garch模型。 其中 是两两资产间的相关系数,也是q的标准化,通过对q标准化保证相关系数...
【摘要】运用DCC-GARCH模型研究了2015年5月至2016年5月间我国的沪深300指数期货(IF)、中证500指数期货(IC)和上证50指数期货(IH)收益率的动态相关性和风险溢出效应.研究表明:在市场出现系统性风险的情形下,并未出现动态相关性增大的情况.在风险溢出效应的研究中,IC对IF的风险溢出效应为正;IF对IH的风险溢出效应为...
R语言GARCH-DCC模型和DCC(MVT)建模估计 原文链接:http://tecdat.cn/?p=7194这个简短的演示说明了使用rmgarch软件包的DCC模型及其方法的使用,尤其是在存在MVT分布形状参数的情况下进行2级DCC估计的另一种方法。第一阶段并将其传递给dccfit cl = makePSOCKcluster(10)multf = multifit(uspec, Dat, cluster =...
基于DCC—MVGARCH模型的证券组合VaR测度与拓展模型