首先我们来介绍loc,loc方法可以根据传入的行索引查找对应的行数据。注意,这里说的是行索引,而不是行号,它们之间是有区分的。行索引其实对应于Series当中的Index,也就是对应Series中的索引。所以我们一般把行索引称为Index,而把列索引称为columns。 我们在之前的文章当中了解过,对于Series来说,它的Index可以不必是整数...
In [7]: obj.index Out[7]: RangeIndex(start=0, stop=4, step=1) 1. 2. 3. 4. 5. 6. 自定义索引:Series可以通过自定义索引改变series的索引值,默认会自动创建一个0到N-1的整数型索引。 In [8]: obj2 = Series([4,7,-5,3],index=['d','b','a','c']) In [9]: obj2 Out[9]...
创建Series的基本语法如下:import pandas as pddata = [10, 20, 30, 40, 50]index = ['a', 'b', 'c', 'd', 'e']series = pd.Series(data, index)print(series)程序输出:a 10b 20c 30d 40e 50dtype: int64在上面的例子中,我们创建了一个包含整数数据和字符索引的Series。每个...
在Pandas中,DataFrame是一个二维标签化的数据结构,用于存储和操作表格数据。为了方便地选择和操作数据,Pandas提供了多种方法,其中最常用的就是loc和iloc。一、loc函数Loc函数是Location-based indexing的缩写,它通过行标签(index)中的具体值来选择行数据。这意味着你可以使用行标签来定位特定的行,并对这些行进行操作。...
(2)对行进行索引 1)使用.ix[]来进行索引 2)使用.loc[]加index来进行行索引 3)使用.iloc[]加整数来进行索引 同样返回一个Series,index为原来的columns。 ''' # 对于行的检索,返回值,也是Series print(df.loc["韩梅梅"]) # 如果检索多行,返回的数据是DataFrame ...
Ø 除此之外ix方法还有一个缺点,就是在面对数据量巨大的任务的时候,其效率会低于loc和iloc方法,所以在日常的数据分析工作中建议使用loc和iloc方法来执行切片操作。 代码1: importpandas as pdprint("---创建一维Series数据---")#创建方式1:#s1=pd.Series([90,86,70],index=['leo','kate','john'])#pr...
(b)可以使用 .loc、.iloc 或 at 和 iat 方法来访问值。 (2)修改值 可以通过索引和赋值操作来修改 DataFrame 中的值。比如: # 创建 DataFramedf=pd.DataFrame({'A':[1,2,3],'B':['a','b','c']},index=['row1','row2','row3'])# 访问特定行和列的值# 访问 'row1' 行 'A' 列的...
Ø 除此之外ix方法还有一个缺点,就是在面对数据量巨大的任务的时候,其效率会低于loc和iloc方法,所以在日常的数据分析工作中建议使用loc和iloc方法来执行切片操作。 代码1: importpandas as pdprint("---创建一维Series数据---")#创建方式1:#s1=pd.Series([90,86,70],index=['leo','kate','john'])#pr...
df.loc[df['A'] > 3].index如果你想要获取这些元素的原始位置索引(即它们在原始DataFrame中的位置),可以使用np.where函数:import numpy as np np.where(df['A'] > 3)这将返回一个元组,其中包含满足条件的元素的行索引和列索引。如果你只想获取行索引,可以使用以下代码:...
loc(index) 切片 iloc() DataFrame访问 访问对象一列或多列 访问DataFrame中的列很方便,因为DataFrame提供了特殊属性columns,通过具体的列名称,我们就可以轻松获取一列或多列数据。 import numpy as np import pandas as pd data1 = np.random.randint(1,10,9).reshape(3,3) df2 = pd.DataFrame(data1, colu...