CUDA平台可以通过CUDA加速库、编译器指令、应用编程接口以及行业标准程序语言的扩展(包括C|C++|Fortran|Python等)来使用。CUDA提供了2层API来管理GPU设备和组织线程,其中驱动API是一种低级API,它相对来说较难编程,但是它对于在GPU设备使用上提供了更多的控制,每个运行时API函数都被分解为更多传给驱动API的基本运算。
例如ai中目前常用的pytorch框架,运行模型时,gpu版本后端中调用的其实就是CUDA C编写的算子(或者说函数),因此当我们配置环境时,配置CUDA和cuDNN等都是为了使用这些后端的支持,从而让我们用python写的模型算法最终能够跑在GPU上,高速运行。 当然,要写出能够在GPU上高速运行的程序不一定完全依赖于CUDA C编程框架,只是CUD...
在编写 CUDA C 程序时, 要将文件命名为*.cu,一般使用 nvcc 命令编译运行,为 CUDA程序文件,支持 C/C++ 语法。 #include<iostream>#include<cuda.h>#include<cuda_runtime.h>intmain(){intdev=0;cudaDevicePropdevProp;cudaGetDeviceProperties(&devProp,dev);std::cout<<"GPU Device Name"<<dev<<": "<<...
通过对 SAXPY 的一个简单的 CUDA C 实现的演练,您现在了解了编程 CUDA C 的基本知识。将 C 代码“移植”到 CUDA C 只需要几个 C 扩展:设备内核函数的__global__de Clara 说明符;启动内核时使用的执行配置;内置的设备变量blockDim、blockIdx和threadIdx用来识别和区分并行执行内核的 GPU 线程。 异类CUDA 编程...
CUDA (一):CUDA C 编程及 GPU 基本知识,提到处理器结构,有2个指标是经常要考虑的:延迟和吞吐量。所谓延迟,是指从发出指令到最终返回结果中间经历的时间间隔。
😎“CUDA C编程不仅仅是将计算任务分配给GPU,更是一种全新的编程思维。”这句话深刻揭示了CUDA编程的本质。在CUDA编程中,我们需要将问题分解为可以并行处理的小任务,并充分利用GPU的并行计算能力来加速程序的执行。这种思维方式的转变,对于提高我们的编程能力和解决问题的效率具有重要意义。💥四、读后体会 🚼...
DAY6:阅读 CUDA C编程接口之CUDA C runtime 我们正带领大家开始阅读英文的《CUDA C Programming Guide》,今天是第六天,我们用几天时间来学习CUDA 的编程接口,其中最重要的部分就是CUDA C runtime.希望在接下来的95天里,您可以学习到原汁原味的CUDA,同时能养成英文阅读的习惯。
DAY 1: 学习CUDA C Programming Guide 今天开始,我们将带领大家开始阅读英文的《CUDA C Programming Guide》,希望在接下来的100天里,您可以学习到原汁原味的CUDA,同时能养成英文阅读的习惯。 本文共计899字,阅读时间15分钟 Changes from Version 9.0 · Documented restriction that operator-overloads【操作符重载】...
在接触cuda c代码之前,那些刚接触cuda的人最好先了解cuda编程模型基本描述和其中的一些术语。 cuda编程模型是一种同时使用cpu和gpu的异构模型。在cuda中,host指cpu及其内存,device指gpu及其内存,host上运行的代码可以管理host和device上的内存、启动kernel(核函数),这些kernel是device上运行的函数,他们由gpu上的许多线...
使用CUDA C/C++ 加速应用程序 如要充分利用本实验,您应已能胜任如下任务: 目标 加速系统 由GPU加速的还是纯CPU的应用程序 为GPU编写应用程序代码 练习:编写一个Hello GPU核函数 编译并运行加速后的CUDA代码 CUDA的线程层次结构 启动并行运行的核函数 练习: 启动并行运行的核函数 CUDA提供的线程层次结构变量 线程和...