Triplet loss(三元损失函数)是 Google 在 2015 年发表的 FaceNet 论文中提出的,与前文的对比损失目的是一致的,具体做法是考虑到 query 样本和 postive 样本的比较以及 query 样本和 negative 样本之间的比较,Triplet Loss 的目标是使得相同标签的...
Triplet loss(三元损失函数)是 Google 在 2015 年发表的 FaceNet 论文中提出的,与前文的对比损失目的是一致的,具体做法是考虑到 query 样本和 postive 样本的比较以及 query 样本和 negative 样本之间的比较,Triplet Loss 的目标是使得相同标签的特征在空间位置上尽量靠近,同时不同标签的特征在空间位置上尽量远离,同...
Triplet loss(三元损失函数)是Google在2015年发表的FaceNet论文中提出的,与前文的对比损失目的是一致的,具体做法是考虑到query样本和postive样本的比较以及query样本和negative样本之间的比较,Triplet Loss的目标是使得相同标签的特征在空间位置上尽量靠近,同时不同标签的特征在空间位置上尽量远离,同时为了不让样本的特征聚合...
Triplet loss(三元损失函数)是 Google 在 2015 年发表的 FaceNet 论文中提出的,与前文的对比损失目的是一致的,具体做法是考虑到 query 样本和 postive 样本的比较以及 query 样本和 negative 样本之间的比较,Triplet Loss 的目标是使得相同标签的特征在空间位置上尽量靠近,同时不同标签的特征在空间位置上尽量远离,同...
如果直接用上述的 loss function 去训练,当类的数量n很大时,要求的计算量非常大,于是使用 NCE 来估算。其基本思想是将多分类问题转化为一组二分类问题,其中二分类任务是区分数据样本和噪声样本。关于对 NCE loss 的理解如下: 当我们设计一个模型来拟合数据时,经常会遇上指数族分布: ...
NCE Loss 如果直接用上述的 loss function 去训练,当类的数量n很大时,要求的计算量非常大,于是使用 NCE 来估算。其基本思想是将多分类问题转化为一组二分类问题,其中二分类任务是区分数据样本和噪声样本。关于对 NCE loss 的理解如下: 当我们设计一个模型来拟合数据时,经常会遇上指数族分布: ...
Contrastive Loss 最近Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie 与 Ross Girshick在图像处理任务上使用自监督预训练从图像中提取特征,在7个下游任务中超过监督学习的特征提取表现。使用的核心技术是对比损失(Contrastive Loss Function),如何理解这个对比损失呢?这篇文章记录个人的直观理解。
文章目录 1. Contrastive Loss (对比loss) 2. Triplet Loss(三元loss) 3. Focal Loss[5] 3.1 引申讨论:其他形式的Focal Loss 参考资料 本文记录一下三种常用的loss function:Contrastive Loss,Triplet Loss,Focal Loss。其中前面两个可以认为是ranking loss类型,Foc... ...
Contrastive lossfunction.Based on:http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf""" def__init__(self,margin=2.0):super(ContrastiveLoss,self).__init__()self.margin=margin defforward(self,output1,output2,label):euclidean_distance=F.pairwise_distance(output1,output2)loss...
NCE Loss 如果直接用上述的loss function去训练,当类的数量n很大时,要求的计算量非常大,于是使用NCE来估算。其基本思想是将多分类问题转化为一组二分类问题,其中二分类任务是区分数据样本和噪声样本。关于对NCE loss的理解如下: 当我们设计一个模型来拟合数据时,经常会遇上指数族分布: ...