Contrastive Loss简介 对比损失在非监督学习中应用很广泛。最早源于2006年Yann LeCun的”Dimensionality Reduction by Learning an Invariant Mapping“,该损失函数主要是用于降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧...
Contrastive loss 最初源于 Yann LeCun “Dimensionality Reduction by Learning an Invariant Mapping” CVPR 2006。 该损失函数主要是用于降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。同样,该损失函数也可以...
与前文的对比损失目的是一致的,具体做法是考虑到 query 样本和 postive 样本的比较以及 query 样本和 negative 样本之间的比较,Triplet Loss 的目标是使得相同标签的特征在空间位置上尽量靠近,同时不同标签的特征在空间位置上尽量远离,同时为了不让...
Triplet loss(三元损失函数)是 Google 在 2015 年发表的 FaceNet 论文中提出的,与前文的对比损失目的是一致的,具体做法是考虑到 query 样本和 postive 样本的比较以及 query 样本和 negative 样本之间的比较,Triplet Loss 的目标是使得相同标签的特征在空间位置上尽量靠近,同时不同标签的特征在空间位置上尽量远离,同...
Contrastive Loss简介 对比损失在非监督学习中应用很广泛。最早源于 2006 年Yann LeCun的“Dimensionality Reduction by Learning an Invariant Mapping”,该损失函数主要是用于降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍...
Contrastive Loss(对比损失)是一种损失函数,通常用于训练对比学习(Contrastive Learning)模型,这些模型旨在学习数据中的相似性和差异性。对比学习的主要目标是将相似的样本对映射到接近的位置,而将不相似的样本对映射到远离的位置。Contrastive Loss 有助于实现这一目标。
1. Supervised Cross-Entropy Loss: The supervised cross-entropy loss is a well-known loss function in supervised learning. It measures the discrepancy between the predicted probabilities and the true labels. In SCL, this loss term ensures that the model learns to predict the correct labels forthe...
Contrastive Loss是来自Yann LeCun的论文Dimensionality Reduction by Learning an Invariant Mapping,目的是增大分类器的类间差异。而Triplet Loss是在FaceNet论文中的提出来的,原文名字为:FaceNet: A Unified Embedding for Face Recognition and Clustering,是对Contrastive Loss的改进。接下来就一起来看看这两个损失函数...
对比损失函数(Contrastive loss function) 使得与负样本对相比正样本对之间的一致性最大化(这里是指的两种数据增强方式之间的一致性) \(l_n = -log\frac{exp(sim(z_{n, i}, z_{n, j})/\tau)}{\sum_{n' = 1, n'≠n}^N exp(sim(z_{n, i}, z_{n, j})/\tau)}\) ...
Supervised Contrastive Learning的loss主要包括两部分:一个是contrastive loss,另一个是classification loss。 1. Contrastive Loss:这部分的目的是使同一类别的样本在嵌入空间中尽可能靠近,而不同类别的样本尽可能远离。对于一个样本,我们通常选择与其最接近的同类样本作为正例(positive),与其最接近的不同类样本作为负例...