(Contrastive Loss/Triplet Loss/Center Loss/Circle Loss) 从Siamese Networks开始说起: Siamese Network,也叫孪生神经网络。直观地解释就是将两个相似或者相同的分支网络结合在一起,分别接受输入,然后输出表征。当然了,也可两个分支共享一个神经网络,因此称之为孪生神经网络。 Siamese Network Siamese Network比较经典...
Contrastive Loss:Contrastive 指的是这些损失是通过对比两个或更多数据点的表征来计算的。这个名字经常被用于 Pairwise Ranking Loss,但我从未见过在 Triplets 中使用它。 Triplet Loss:当使用 triplet 三元组训练时,常作为 Loss 名称。 Hinge...
其实在诸如人脸识别和图片检索的应用中,就已经使用了contrastive loss和triplet loss,但仍然存在一些问题,比如收敛慢,陷入局部最小值,相当部分原因就是因为损失函数仅仅只使用了一个negative样本,在每次更新时,与其他的negative的类没有交互。之前LeCun提出的对比损失只考虑输入成对的样本去训练一个神经网络去预测它们是否...
Contrastive Loss(对比损失)是一种损失函数,通常用于训练对比学习(Contrastive Learning)模型,这些模型旨在学习数据中的相似性和差异性。本文记录相关内容。 简介 Contrastive Loss(对比损失)是一种损失函数,通常用于训练对比学习(Contrastive Learning)模型,这些模型旨在学习数据中的相似性和差异性。对比学习的主要目标是将相...
文章目录 1. Contrastive Loss (对比loss) 2. Triplet Loss(三元loss) 3. Focal Loss[5] 3.1 引申讨论:其他形式的Focal Loss 参考资料 本文记录一下三种常用的loss function:Contrastive Loss,Triplet Loss,Focal Loss。其中前面两个可以认为是ranking loss类型,Foc... ...
Contrastive Loss 在传统的siamese network中一般使用Contrastive Loss作为损失函数,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。 siamese network-孪生神经网络 contrastive loss的表达式如下: 代码语言:javascript 复制 # tensorflow伪代码 defcontrastive_loss(self,y,d,batch_size):tmp=y*tf.square(d...
class ContrastiveLoss(torch.nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() ...
ranking loss在很多不同的领域,任务和神经网络结构(比如siamese net或者Triplet net)中被广泛地应用。其广泛应用但缺乏对其命名标准化导致了其拥有很多其他别名,比如对比损失Contrastive loss,边缘损失Margin loss,铰链损失hinge loss和我们常见的三元组损失Triplet loss等。
Ranking Loss是神经网络任务中的常用函数,尤其在度量学习领域,如Siamese Nets和Triplet Nets。尽管其名称多样,如Contrastive Loss、Margin Loss、Hinge Loss和Triplet Loss,本质上都是为了预测输入样本间的相对距离。度量学习的目标是通过相似度分数,即预测样本间的距离,来理解和组织数据。在应用Ranking ...
(1)contrastive loss:输入是两个(组)样本,计算loss时,需要区分两个样本是否属于同类,若属于同类(相似),loss等于距离的值,若不属于同类(不相似)并且距离大于m,loss的值忽略不计(样本易分,不关注),否则等于m减去两个样本的距离。 (2)triplet loss:输入是三个(组)样本,当与负样本距离大于正样本,并且差值大于m...