GAN目前可应用于各种领域,如图像和视频生成、音乐合成和文本到图像合成等。 4、Transformer 架构 Transformer是一种神经网络架构,广泛应用于自然语言处理NLP任务,如翻译、文本分类和问答系统。它们是在2017年发表的开创性论文“Attention Is All You Need”中引入的。 将Transformer想象成一个复杂的语言模型,通过将文本分...
本文旨在友好地介绍深度学习架构,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、transformer和encoder-decoder 架构。 闲话少说,让我们直接开始吧。 2. 卷积神经网络 卷积神经网络(CNN)是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将 CNN 想象成一个多层过滤器,可处...
RNN 的工作原理是一次处理序列中的每个单词,并使用前一个单词的信息来预测下一个单词。 RNN 的关键组件是循环连接,它允许信息从一个时间步流到下一个时间步。循环连接是神经元内的连接,它“记住”前一个时间步骤的信息。 RNN 可以分为三个主要部分:输入层、循环层和输出层。 输入层:输入层在每个时间步接收信息...
本文重点介绍了图像和自然语言处理等场景的神经网络结构,包括CNN、RNN、GAN、Transformers以及encoder-decoder架构等,学会这些网络结构可以大家在处理具体任务时可以有更加针对性的选择。 您学废了嘛?
本文旨在友好地介绍深度学习架构,包括卷积神经网络CNN、循环神经网络RNN、生成对抗网络GAN、transformer和 encoder-decoder架构。 闲话少说,让我们直接开始吧。 卷积神经网络 卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将 CNN 想象成一个多层过滤器,可处理图像以提取有意义...
本文将从什么是CNN?什么是RNN?什么是LSTM?什么是Transformer?四个问题,简单介绍神经网络结构。 神经网络结构 一、什么是CNN 卷积神经网络(CNN):通过卷积和池化操作有效地处理高维图像数据,降低计算复杂度,并提取关键特征进行识别和分类。 网络结构 卷积层:用来提取图像的局部特征。
(1)局部信息的获取不如RNN和CNN强; (2)位置信息编码存在问题,因为位置编码在语义空间中并不具备词向量的可线性变换,只是相当于人为设计的一种索引,所以并不能很好表征位置信息; (3)由于transformer模型实际上是由残差模块和层归一化模块组合而成,并且层归一化模块位于两个残差模块之间,导致如果层数较多时连乘计算会...
从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这...
跟随【导师不教?我来教!】同济计算机博士半小时就教会了我五大深度神经网络,CNN/RNN/GAN/transformer/...
深度学习是人工智能领域的一个重要分支,近年来取得了显著的发展。其中,RNN、CNN、Transformer、BERT和GPT是五种常用的深度学习模型,它们在计算机视觉、自然语言处理等领域都取得了重要的突破。本文将从关键技术、处理数据、应用场景、经典案例4个维度来简要介绍这五种模型。