Transformer缺点: (1)局部信息的获取不如RNN和CNN强; (2)位置信息编码存在问题,因为位置编码在语义空间中并不具备词向量的可线性变换,只是相当于人为设计的一种索引,所以并不能很好表征位置信息; (3)由于transformer模型实际上是由残差模块和层归一化模块组合而成,并且层归一化模块位于两个残差模块之间,导致如果层数...
计算资源充足: Transformer可能是更好的选择,尤其是对于长序列数据。 计算资源有限: CNN或RNN可能更适合,取决于任务类型。 结论 在选择深度学习模型时,需要根据任务的特性、数据类型和计算资源等多方面因素进行综合考虑。CNN、RNN和Transformer各有优缺点,选择适合自己任务需求的模型将有助于提高模型性能。希望本文对读者...
Transformer是一种基于注意力机制的模型,摒弃了RNN的循环结构,使得模型能够更高效地处理序列数据。Transformer通过自注意力机制捕捉序列中任意位置的依赖关系,极大地提升了并行计算能力,是现代NLP的主流架构。 PyTorch代码实现 importtorchimporttorch.nnasnnimporttorch.nn.functionalasFclassTransformerModel(nn.Module):def__...
从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这部...
神经网络到底是做什么的?5大经典神经网络(CNN/RNN/GAN/LSTM/Transformer)计算机博士一次带你学明白!简直不要太爽!共计39条视频,包括:神经网络到底是做什么的?、1-卷积神经网络应用领域、2-卷积的作用等,UP主更多精彩视频,请关注UP账号。
3.1 Transformer 3.1.1 自注意力机制 自注意力机制(Self-Attention)是Transformer的核心组成部分,它可以计算输入序列中每个位置的关注度,从而有效地捕捉长距离依赖关系。自注意力机制可以表示为以下公式: 其中, 表示查询(Query), 表示关键字(Key), 表示值(Value)。
从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这...
同时,RNN模型可以处理任意长度的输入序列,非常适合处理自然语言文本和语音数据。 RNN模型的缺点在于它容易出现梯度消失和梯度爆炸问题,这是由于递归过程中梯度的连乘效应导致的。这个问题可以通过一些改进的技术来解决,如LSTM和GRU。 典型应用场景:语言模型、文本生成、机器翻译、语音识别等。 三、Transformer模型 ...
在线视频:03-深入理解CNN、RNN和LSTM是七月在线-深度学习集训营 第三期[2022]的第1集视频,该合集共计6集,视频收藏或关注UP主,及时了解更多相关视频内容。