深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 为了验证提出的 RPN 2 模型的有效性,本文通过大量的实验结果...
从入门到精通一口气学完CNN、RNN、GAN、GNN、DQN、Transformer、LSTM等八大深度学习神经网络!丨零基础篇共计122条视频,包括:1.1.机器学习和深度学习的区别、2.2.深度学习介绍、3.3.02_深度学习介绍等,UP主更多精彩视频,请关注UP账号。
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 为了验证提出的 RPN 2 模型的有效性,本文通过大量的实验结果...
【127集】2025最新八大神经网络,CNN、RNN、GAN、GNN、DQN、Transformer、LSTM、CapsuleNet等神经网络算法一口气学完!共计121条视频,包括:【卷积神经网络CNN】1-回顾深度神经网络_卷积层是局部连接、2-单通道卷积的计算、3-彩色图片卷积的计算等,UP主更多精彩视频,请关
3. RNN 3.1 Standard 3.2 LSTM 4. Transformer 4.1 Standard 4.2 BERT 4.3 GPT 4.4 ViT 5. Others 5.1 GNN 5.2 GAN 1. MLP MLP:Multi Layer Perseption:多层感知器。主要用在神经网络中。 参考: ● 神经网络1:多层感知器-MLP 1.1 Standard 2. CNN CNN:Convolutional Neural Network:卷积神经网络。主要用在...
13、Transformer与RNN相比,不能利用单词顺序特征,所以需要在输入加入位置特征,经过实验,加入位置特征...
现在回头看 17 年那句 Attention is all you need,真是神预言,Transformer 模型从自然语言处理机器翻译开始,先是慢慢的影响(18 年中毕业论文我都还 LSTM),然后席卷整个 NLP 领域,特别是 BERT 出来后,其他啥的都丢一边去了,等 NLP ...
但是,经典的深度学习网络(ANN,CNN,RNN)却难以处理这些非欧数据,于是,图神经网络(GNN)应运而生,GNN以图作为输入,输出各种下游任务的预测结果。 下游任务包括但不限于: 节点分类:预测某一节点的类型 边预测:预测两个节点之间是否存在边 社区预测:识别密集连接的节点所形成的...
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 ...
本工作提出了一种非深度图算法DepGraph,实现了架构通用的结构化剪枝,适用于CNNs, Transformers, RNNs, GNNs等网络。该算法能够自动地分析复杂的结构耦合,从而正确地移除参数实现网络加速。基于DepGraph算法,我们开发了PyTorch结构化剪枝框架 Torch-Pruning。不同于依赖Masking实现的“模拟剪枝”,该框架能够实际地移除参数...