原文:全面整理:深度学习(ANN,CNN,RNN)和强化学习重要概念和公式 01神经网络 神经网络是一类用层构建的模型。常用的神经网络类型包括卷积神经网络和递归神经网络。 1.1 结构 关于神经网络架构的描述如下图所示: 记i为网络的第i层,j为一层中隐藏的第j个单元,得到: ...
维基百科:人工神经网络(artificial neural network,ANN)简称神经网络(neural network,NN)或类神经网络,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。 基本原理: 图片 人工神经网络结构 圆形节点与人工神经元: 在人工神经...
ANN无法在处理序列数据所需的输入数据中捕获序列信息。 现在来看看如何使用两种不同的架构来克服MLP的局限性:循环神经网络(RNN)和卷积神经网络(CNN)。 循环神经网络 (RNN) – 什么是RNN以及为什么使用它? 首先从架构的角度来理解RNN和ANN之间的区别: ANN隐藏层上的循环约束变为RNN。 正如您所见,RNN在隐藏状态上有...
深度学习中不同的神经网络(如卷积神经网络CNN、循环神经网络RNN、人工神经网络ANN)正在改变着我们与世界之间的交互方式。这些不同类型的神经网络是深度学习革命的核心,为无人机、自动驾驶汽车、语音识别等应用提供了推动力。 人们自然会联想到——机器学习算法难道不能做到吗?以下是研究人员和专家们倾向于选用深度学习而...
长短期记忆网络是RNN模型的一种,它通过添加“忘记”门来避免梯度消失问题。 强化学习与控制(Reinforcement Learning and Control) 强化学习的目标是让代理(agent)学会如何在环境中进化。 马尔科夫决策过程(Markov decision processes) 马尔科夫决策过程(MDP)是一个5元组,其中: ...
在深度学习中,不同类型的神经网络,如卷积神经网络(CNN)、循环神经网络(RNN)、人工神经网络(ANN)等,正在改变我们与世界互动的方式。这些不同类型的神经网络是深度学习革命的核心,为无人机、自动驾驶汽车、语音识别等应用提供了源动力。 人们很自然地会怀疑——机器学习算法难道不能做到同样的效果吗?好吧,以下是研究...
有许多不同的概念和技术构成了人工智能(AI)和机器学习(ML)领域。其中两个重要的概念是深度学习和神经网络。 深度学习:深度学习是机器学习的一个子集,它消除了机器学习通常涉及的一些数据预处理,深度学习算法可以处理非结构化数据,简而言之,它是一种自动化预测分析
CNN与RNN的介绍 本文主要总结我对李宏毅老师讲的CNN和RNN的理解,通过对比总结各自的优势,同时加深自己对这方面知识的理解。 1、CNN介绍 CNN是一种利用卷积计算的神经网络。它可以通过卷积计算将原像素很大的图片保留主要特征变成很小的像素图片。本文介绍方式以李宏毅老师ppt内容为主,具体下面介绍。
原文:全面整理:深度学习(ANN,CNN,RNN)和强化学习重要概念和公式 01 神经网络 神经网络是一类用层构建的模型。常用的神经网络类型包括卷积神经网络和递归神经网络。 1.1 结构 关于神经网络架构的描述如下图所示: 记 为网络的第 层, 为一层中隐藏的第
Python零基础学习53课-神经网络ANN(MLP), CNN, RNN区别及应用(四) 247 -- 19:03 App Python零基础学习第46课-矩阵乘积和(手工)验算2层神经网络 1443 -- 26:03 App Python零基础学习75讲-使用OpenCV HAAR Cascade Classifiers识别(图片)人脸和眼部特征 3014 -- 24:44 App Python零基础学习69讲-应用Keras ...