Transformer的关键创新之处在于使用自注意力机制,这使得模型能够高效处理长序列文本,而无需进行昂贵的递归或卷积操作。这使得Transformer的计算效率高,能够有效地完成各种NLP任务。 简单地说,Transformer是一种功能强大的神经网络架构,专为自然语言处理任务而设计。它们通过将文本分解成更小的片段,并通过自注意机制分析片段...
并行计算: Transformer能够高效进行并行计算,提高了训练速度。 捕捉全局依赖关系: 能够更好地捕捉到序列数据中的全局依赖关系。 3.2.2 缺点: 计算成本较高: 相比于CNN和RNN,Transformer的计算成本较高。 对序列长度敏感: 随着序列长度增加,模型的计算量也会增加。 3.3 Transformer的适用场景 适用于处理长序列数据,如...
从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这部...
CNN和RNN在处理大规模数据时需要占用大量的内存和计算资源,尤其是在深层网络中。而Transformer在特征提取中采用了自注意力机制,避免了RNN中梯度消失和梯度爆炸问题,可以更深层次地进行特征提取,同时内存和计算资源占用也比较低。 五、鲁棒性 CNN和RNN在处理输入数据时对数据的长度和宽度有一定的限制,尤其是对于图像数据...
Transformer 编码器-解码器架构 本本将介绍涉及卷积神经网络 (CNN)、循环神经网络 (RNN)、生成对抗网络 (GAN)、Transformer 和编码器-解码器架构的深度学习架构。 卷积神经网络(CNN) 卷积神经网络 (CNN) 是一种人工神经网络,旨在处理和分析具有网格状拓扑的数据,例如图像和视频。将 CNN 想象为一个多层过滤器,用于...
从语义特征提取能力:Transformer显著超过RNN和CNN,RNN和CNN两者能力差不太多。 长距离特征捕获能力:CNN极为显著地弱于RNN和Transformer,Transformer微弱优于RNN模型,但在比较远的距离上(主语谓语距离大于13),RNN微弱优于Transformer,所以综合看,可以认为Transformer和RNN在这方面能力差不太多,而CNN则显著弱于前两者。这...
深度学习是人工智能领域的一个重要分支,近年来取得了显著的发展。其中,RNN、CNN、Transformer、BERT和GPT是五种常用的深度学习模型,它们在计算机视觉、自然语言处理等领域都取得了重要的突破。本文将从关键技术、处理数据、应用场景、经典案例4个维度来简要介绍这五种模型。
随着深度学习技术的发展,许多模型已经取代了传统的机器学习方法,成为了自然语言处理领域的主流。在本文中,我们将讨论三种常见的自然语言处理模型:Transformer、CNN和RNN。我们将从背景、核心概念、算法原理、代码实例和未来发展趋势等方面进行全面的探讨。 2.核心概念与联系...
Transformer 弥补了以上特征提取器的缺点,主要表现在它改进了 RNN 训练速度慢的致命问题,该算法采用self-attention机制实现快速并行;此外,Transformer 还可以加深网络深度,不像 CNN 只能将模型添加到 2 至 3 层,这样它能够获取更多全局信息,进而提升模型准确率。
5-从FastRCNN引入FasterRCNN 52:15 1-回顾RCNN_SPPnet_Fast-RCNN 53:07 2-FasterRNN的核心RPN_正向传播的框过滤_NMS 01:16:01 3-NMS代码实现流程_mAP目标检测平均指标 01:08:41 4-FasterRCNN论文讲解_从介绍到RPN的loss 01:02:58 5-FasterRCNN论文讲解_从RPN损失到评估指标对比 01:18:33 ...