而Transformer在特征提取中采用了自注意力机制,避免了RNN中梯度消失和梯度爆炸问题,可以更深层次地进行特征提取,同时内存和计算资源占用也比较低。 五、鲁棒性 CNN和RNN在处理输入数据时对数据的长度和宽度有一定的限制,尤其是对于图像数据和序列数据。而Transformer采用自注意力机制,不需要对输入数据进行长度和宽度的限制...
计算成本较高: 相比于CNN和RNN,Transformer的计算成本较高。 对序列长度敏感: 随着序列长度增加,模型的计算量也会增加。 3.3 Transformer的适用场景 适用于处理长序列数据,如机器翻译、文本生成等任务。 第四部分:如何选择? 4.1 数据类型和任务 图像数据: 选择CNN。 序列数据: 选择RNN或Transformer,取决于序列的长度...
Transformer模型通过自注意力机制,能够在不同位置对序列中的每个元素赋予不同的重要性,从而有效地捕捉长距离依赖关系。 并行计算问题:传统的RNN模型在计算时需要按照序列的顺序依次进行,无法实现并行计算,导致计算效率较低。而Transformer模型采用了编码器-解码器结构,允许模型在输入序列上进行编码,然后在输出序列上进行解码...
总结比较 MLP:最简单的前馈网络,不处理序列数据。 CNN:通过局部感受野和参数共享,擅长处理图像。 RNN:擅长处理序列数据,但难以捕捉长序列中的依赖关系。 Transformer:利用自注意力机制高效处理序列数据,解决了RNN的长距离依赖 问题,适用于需要复杂关系理解的任务。发布...
3.1 Transformer 3.1.1 自注意力机制 自注意力机制(Self-Attention)是Transformer的核心组成部分,它可以计算输入序列中每个位置的关注度,从而有效地捕捉长距离依赖关系。自注意力机制可以表示为以下公式: 其中, 表示查询(Query), 表示关键字(Key), 表示值(Value)。
(1)RNN可以输入不定长序列; (2)Transformer做法跟CNN类似,用Padding填充到定长。 2、关于NLP句子中单词之间的相对位置信息 (1)RNN因为结构就是线性序列的,天然会将位置信息编码进模型; (2)CNN的卷积层其实也是保留了位置相对信息的; (3)Transformer来说,为了能够保留输入句子单词之间的相对位置信息,在输入端引入了...
从综合特征抽取能力角度衡量,Transformer显著强于RNN和CNN,而RNN和CNN的表现差不太多。 并行计算能力:对于并行计算能力,上文很多地方都提到过,并行计算是RNN的严重缺陷,而Transformer和CNN差不多。
强推!【深度学习-神经网络】一口气学完:CNN卷积神经网络、RNN循环神经网络、GAN生成式对抗网络!真的通俗易懂!建议收藏!(人工智能、深度学习、AI) 1629 3 10:29:34 App 不同神经网络都是做什么的?华理计算机博士一次带你吃透六大神经网络(CNN/RNN/GAN/GNN/Transformer/LSTM) 672 39 03:54:04 App 卷积到底在...
可以看到,Transformer以及CNN、RNN是不同的深度学习模型,Transformer是一种基于自注意力机制的特征提取网络结构,主要用于自然语言处理领域。CNN是一种基于卷积层的特征提取网络结构,主要用于图像处理领域。RNN是一种基于循环层的特征提取网络结构,用于自然语言处理,也用于计算机视觉。总体而言,因为使用自注意力机制(self-atte...