将SIFT与颜色描述符耦合是局部-局部特征融合的一个好选择。颜色-SIFT描述符融合特征的使用可以部分地解决不变性和辨别能力之间的权衡问题。在几个基准识别测试集上已经对几个诸如HSV-SIFT,HueSIFT和OpponentSIFT几个融合特征进行了评估。HSV-SIFT和HueSIFT特征都属于尺度,平移不变性特征。OpponentSIFT使用SIFT描述符描述对...
第一,混合方法可被视为从SIFT-到基于CNN的方法的过渡方法,除了将CNN特征提取为局部描述符之外,它在所有方面都类似于基于SIFT的方法。由于在图像块特征提取期间需要多次访问网络,因此特征提取步骤的效率可能会受到影响。 第二,单向CNN方法倾向于将SIFT和混合方法中的各个步骤结合起来。在表5中,“预训练单向网络”一类...
基于SIFT的方法在2012年之前一直是研究的重点(当然近年来也有不少相关的杰出工作)。这一类方法通常使用如Hessian-Affine这种探测器,同时也使用SIFT这种描述符。编码本将局部特征映射到一组向量中。基于编码本大小,我们将基于SIFT的方法分为如下三类。 FV-5KCf">使用小型编码本。视觉词汇少于几千个,紧凑向量在降维和编...
第一,混合方法可被视为从SIFT-到基于CNN的方法的过渡方法,除了将CNN特征提取为局部描述符之外,它在所有方面都类似于基于SIFT的方法。由于在图像块特征提取期间需要多次访问网络,因此特征提取步骤的效率可能会受到影响。 第二,单向CNN方法倾向于将SIFT和混合方法中的各个步骤结合起来。在表5中,“预训练单向网络”一类...
SIFT算子(Scale Invariant Feature Transform)是David Lowe提出的一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子。SIFT特征提取的是极其细微、大量的特征点,即时少数物体、物体的一小部分也可以产生大量特征向量。 SIFT算法如果不考虑实时要求,是一个比较好的用于图像配准的算法,而且仅...
近几年,CNN这种层次结构模型在许多视频相关的任务上取得的成绩远好于手工特征,基于SIFT特征的模型的风头似乎被CNN盖过了。基于CNN的检索模型通常计算出紧密的图像表示向量,并使用欧氏距离或ANN(approximate nearest neighbor)查找算法进行检索。最近的文献可能会直接使用预训练好的CNN模型或微调后应用于特定的检索任务。这...
本发明属于遥感影像处理技术领域,涉及一种融合sift特征和cnn特征的遥感图像配准方法及系统。 背景技术 影像配准是指根据带有地理参考的影像将未配准的影像进行几何纠正的过程,这些影像内容包含相同的区域,可能来源于不同的拍摄时间、不同的传感器或者不同的拍摄视角。影像配准是遥感图像处理领域的基本问题,对后续应用具有重...
本发明提供一种融合SIFT特征和CNN特征的遥感图像配准方法及系统,包括对输入的参考影像和待配准影像进行特征点提取,采用SIFT方式对特征点的邻域区域进行特征表达,获得SIFT特征;将特征点的邻域区域作为卷积神经网络CNN的输入端,使用预先采用迁移学习策略训练完成的CNN模型进行高层特征表达,获取CNN特征;将SIFT特征和CNN特征进行...
图像检索技术综述(从SIFT到CNN) 基于内容的图像检索(CBIR)在20世纪90年代初才真正开始研究。根据图像的纹理、颜色等视觉信号对图像进行检索(visual cues),提出了多种算法和图像检索系统。一个简单的策略是提取全局描述符...InstanceRetrieval摘要:在早期,基于内容的图像检索(CBIR)研究具有全局特征。自2003年以来,基于局...
又比如说SIFT特征提取,其对于以上四点都有着不变性,其中由于尺度金字塔,使得对尺度也有不变性。这里我们对于不变性的理解就是,同一对象发生平移、旋转、光照变化、尺度变换甚至形变等,其属性应该一致。下面我们给出具体的不变性和相等性的定义。 其中不变性(invariance)的定义正如...