In the last two decades, Chromatin Conformation Capture (3C technology) and its high-throughput derivatives allowed detailed analysis of the chromatin architecture. The 3C method is based on ligation of distant fragments brought together by DNA looping. The method analyzes a particular genomic region ...
Micro Capture-C (MCC) is a chromatin conformation capture (3C) method for visualizing reproducible three-dimensional contacts of specified regions of the genome at base pair resolution. These methods are an established family of techniques that use proxi
Advances in methodologies based on chromatin conformation capture (3C) have shed light on the genome-wide organization of chromatin in developmental processes. Here, we review recent discoveries regarding the regulation of three-dimensional (3D) chromatin conformation, including promoter-enhancer looping, ...
Straightforward protocol for Allele-Specific Chromatin Conformation CaptureAllele-specific 3CChromatin conformationEnhancerPromotereQTLA key advance in our understanding of gene regulation came with the finding that the genome undergoes three-dimensional nuclear folding in a genetically determined process. This ...
From chromosome conformation capture (3C), chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), to Hi-C, chromatin conformation capture techniques lack specificity to a specific protein [13,33,51,292,293]. To improve the specificity, Fullwood et al. [...
et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006). Article PubMed PubMed Central CAS Google Scholar Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based...
High-throughout chromosome conformation capture (3C)-based technologies, such as Hi-C, have been exploited to acquire the contact frequencies among genomic loci at genome-scale. Various computational tools have been proposed to recover the underlying chromatin 3D structures from in situ Hi-C contact...
We developed 4C technology (chromosome conformation capture (3C)-on-chip), which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions...
Advances in genomic technologies and the development of new analytical methods, such as Chromosome Conformation Capture (3C) and its derivatives, provide unprecedented insights in the spatial organization of genomes. Here we present TADbit, a computational framework to analyze and model the chromatin ...
To address this gap, we developed Pore-C, which combines chromatin conformation capture with nanopore sequencing of concatemers to profile proximal high-order chromatin contacts at the genome scale. We also developed the statistical method Chromunity to identify sets of genomic loci with frequencies ...