但文献中只是单单给出一个不同样本ChIP-seq peak数据之间的computeMatrix热图,并没有说明具体的差异以及对差异进行分析。H3K27ac是基因活性的标志,因此它的相关ChIP-seq数据能够帮助识别在DIPG和GBM中活跃的增强子,这些增强子可能参与了肿瘤特定的转录调控。通过分析H3K27ac修饰与基因启动子区域的相互作用,可以预测出DIP...
ChIP-seq主要用来研究蛋白质和DNA的相互作用,ChIPseeker 可以用来对ChIP-seq数据进行注释与可视化,下面我们就来介绍一下如何用ChIPseeker对chip-seq数据进行可视化操作。 操作步骤 把所有sample_peaks文件放在工作路径下,格式为 #安装程序 #source("http://bioconductor.org/biocLite.R") #biocLite("ChIPseeker") #biocLi...
ChIP-seq 分析:Peak 注释与可视化(9) 1. 基因注释 到目前为止,我们一直在处理对应于转录因子结合的 ChIPseq 峰。顾名思义,转录因子可以影响其靶基因的表达。 转录因子的目标很难单独从 ChIPseq 数据中确定,因此我们通常会通过一组简单的规则来注释基因的峰: 如果峰与基因重叠,则通常将峰注释为基因。 2. Peak...
ChIP-seq 分析:Mapped 数据可视化(4) 1. Mapped reads 现在我们有了 BAM 文件的索引,我们可以使用 idxstatsBam() 函数检索和绘制映射读取的数量。 mappedReads<-idxstatsBam("SR_Myc_Mel_rep1.bam")TotalMapped<-sum(mappedReads[,"mapped"])ggplot(mappedReads,aes(x=seqnames,y=mapped))+geom_bar(stat="...
在为ChIP-seq数据开发了各种统计方法和质量指标后,reads分布的可视化检查可以有效直观地评估和分析所获得的数据。可以使用交互式可视化工具,如IGV或 SeqMonk。几个web服务器(如UCSC genome browser和WashU Epigenome browser)可以将获得的ChIP-seq结果与其他注释数据关联分析,如进化保守性和各种组织中的基因表达。
以下引自deeptools辅助CHIP-seq数据分析-可视化(http://www.bio-info-trainee.com/2136.html) 第一个功能,把bam文件转换为bw格式文件: bamCoverage -b tmp.sorted.bam -o tmp.bw 里面有一个参数非常重要,就是--extendReads 在 macs软件里面也有,macs2 pileup --extsize 200 ,就算是你的reads长度可能不一致...
ChIP-seq 分析:Peak 注释与可视化(9) 1. 基因注释 到目前为止,我们一直在处理对应于转录因子结合的 ChIPseq 峰。顾名思义,转录因子可以影响其靶基因的表达。 转录因子的目标很难单独从 ChIPseq 数据中确定,因此我们通常会通过一组简单的规则来注释基因的峰:...
上一讲我们介绍了一文讲明白ChIP-seq(上):高分文章里为什么做ChIP-seq?,这一讲我们就要实践了,具体来跟着流程解读一下ChIP-seq的图。 得到了测序结果,后续就是分析,大体上分为4步: 一、测序数据质量控制 二、序列比对 三、Peak calling 四、Peak annotation与可视化 ...
在为ChIP-seq数据开发了各种统计方法和质量指标后,reads分布的可视化检查可以有效直观地评估和分析所获得的数据。可以使用交互式可视化工具,如IGV或 SeqMonk。几个web服务器(如UCSC genome browser和WashU Epigenome browser)可以将获得的ChIP-seq结果与其他注释数据关联分析,如进化保守性和各种组织中的基因表达。
图2:使用 ROADMAP组蛋白修饰数据的QC 分析。(A)六个组蛋白修饰和input样本的四个QC评分分布;(B)Roadmap表观基因组数据库的 117 种细胞类型的 H3K36me3 reads分布的 Pearson 热图。 (7)可视化 在为ChIP-seq数据开发了各种统计方法和质量指标后,reads分...