即如果您之前调用的是ChatGPT的接口,可以实现缝切换chatglm2-6b。具体实现方式如下: 1、进入到/home/work/chatglm2/chatglm2-web下面,修改openai_api.py的文件,更改模型文件路径,如若要修改服务端口,可以在下面修改port参数,这里修改成了8099端口。 2、然后启动服务 python openai_api.py 3、测试服务的可用性, ...
通过千帆大模型开发与服务平台,我们可以更加高效地利用ChatGLM2-6B进行自然语言处理任务,提高任务的准确率和效率。例如,在智能客服领域,我们可以利用ChatGLM2-6B实现更加智能和高效的对话交互,提升用户体验。 综上所述,ChatGLM2-6B是一款功能强大、性能卓越的自然语言处理模型。通过详细的安装、基础用法、本地部署、模...
模型数据项目:https://huggingface.co/THUDM/chatglm2-6b/tree/main 显卡内存为6GB,所以符合int4的模型。模型量化会带来一定的性能损失,ChatGLM2-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。 ~]# git clone https://huggingface.co/THUDM/chatglm2-6b-int4 四、部署运行 先修改对应文件的内容,将红色...
ChatGLM2-6B是由智谱AI与清华KEG实验室发布的中英双语对话模型,具备强大的推理性能、效果、较低的部署门槛及更长的上下文,在MMLU、CEval等数据集上相比初代有大幅的性能提升。本文介绍了相关API。 接口描述 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台...
ChatGLM2-6B是开源的文本生成式对话模型,基于General Language Model(GLM)框架,具有62亿参数。 fp16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上,人人都能上手一个大模型。ChatGLM-6B...
今年6月份清华大学发布了ChatGLM2,相比前一版本推理速度提升42%。最近,终于有时间部署测试看看了,部署过程中遇到了一些坑,也查了很多博文终于完成了。本文详细整理了ChatGLM2-6B的部署过程,同时也记录了该过程中遇到的一些坑和心得,希望能帮助大家快速部署测试。另外:作者已经把模型以及安装依赖全部整理好了,获取...
第一代的ChatGLM2-6B是一个非常优秀的聊天大语言模型。它的部署成本很低,完全版本仅需13GB显存即可进行推理,微调需要14GB显存,在消费级显卡即可使用。而其INT4量化版本则最低仅需6GB即可推理。相比较第一代,第二大的ChatGLM2-6B模型主要有四点升级:ChatGLM2-6B升级1:基座模型升级,性能更加强大 第二代的...
ChatGLM2-6B是一种基于Transformer架构的开源双语对话语言模型,具有60亿参数,支持中英文两种语言。它基于GLM-130B模型进行优化,在大量无监督数据上进行预训练,并使用迁移学习和微调技术来提高对话性能。ChatGLM2-6B的主要特点包括: 强大的语言生成和理解能力:ChatGLM2-6B能够根据上下文生成连贯、有意义的回复,并理解复...
作为开源中英双语对话模型的佼佼者,ChatGLM2-6B的发布无疑为这一领域注入了新的活力。这款模型在性能上实现了大幅提升,支持8-32k的上下文长度,推理速度更是提升了42%,成为当前对话模型中的佼佼者。 ChatGLM2-6B是ChatGLM-6B的第二代版本,它在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入...