git lfs 工具——用来下载大文件的工具(受网络限制 ,可能需要多次尝试) git clone https://github.com/THUDM/ChatGLM-6B#model文件最好像我这样放置,好找一些~cdChatGLM-6B mkdir modelcdmodel apt-get update apt-get install git-lfs git-lfs install git lfs clone https://huggingface.co/THUDM/chatgl...
在官方的模型实现下,推理速度相比初代提升了42%,INT4量化下,6G显存支持的对话长度由1K提升到了8K。4. 更开放的协议 ChatGLM2-6B权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。效果 相比于初代模型,ChatGLM2-6B在多个维度的能力上,都取得了巨大的提升。数理逻辑 知识推理 长文档理解 评测...
魔搭社区也近期也推出了ChatGLM-6B 和 ChatGLM2-6B基于魔搭社区的微调教程,希望通过详细的教程,更多的开发者可以基于开源或行业数据集微调ChatGLM-6B 和 ChatGLM2-6B模型,共同推进生态繁荣。 环境配置与安装 本文在8*3090的环境配置下运行 (可以单卡运行, 显存要求16G) python>=3.8 服务器连接与环境准备 # 服...
2. 更长的上下文:ChatGLM2-6B采用了FlashAttention技术,使其支持32K的上下文长度,而ChatGLM-6B只能支持2K2。这使得ChatGLM2-6B能够进行更多轮次的对话,也可以读取更长的文档进行相关的提取和问答。 3. 更高效的推理:ChatGLM2-6B引入了Multi-Query Attention技术,在更低的显存资源下以更快的速度进行推理,相比第一...
但是,经过实际体验后,客观的说ChatGLM2-6B依然还和GPT4有一定差距,但是提升也确实很大。这并不是说CEval评估的不准,主要是一个评估的侧重点问题,这个也放到后续具体讨论。推理效率提高:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。说白了,...
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。相比...
此外,ChatGLM2-6B基座模型的上下文长度由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。另外,ChatGLM2-6B 可以实现更高效的推理,在官方的模型实现下,其推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
ChatGLM2-6B-INT4是在ChatGLM2-6B的基础上进行INT4 量化,6G 显存支持的对话长度由 1K 提升到了 8K。本文介绍了相关API。 功能介绍 调用本接口,发起一次对话请求。 在线调试 平台提供了 API在线调试平台-示例代码 ,用于帮助开发者调试接口,平台集成快速检索、查看开发文档、查看在线调用的请求内容和返回结果、复制...
ChatGLM2-6B 使用了 Multi-Query Attention,提高了生成速度。生成 2000 个字符的平均速度对比如下 Multi-Query Attention 同时也降低了生成过程中 KV Cache 的显存占用,此外,ChatGLM2-6B 采用 Causal Mask 进行对话训练,连续对话时可复用前面轮次的 KV Cache,进一步优化了显存占用。因此,使用 6GB 显存的显卡进行 IN...