不然每次使用模型之前都需要先训练模型,对于data hungry的神经网络来说,视数据多寡和精度要求高低,训练一次的时间从几分钟到数百个小时不等,这是任何人都耗不起的。把训练好的模型保存下来,当需要使用它的时候,只需要加载就行了。 现在需要考虑的一个问题是,保存模型的时候,我们到底要保存哪些东西? 之前有提到,可...
随着层数的增加,我们看到输出值迅速向0靠拢,在后几层中,几乎所有的输出值 x 都很接近0!回忆优化神经网络的back propagation算法,根据链式法则,gradient等于当前函数的gradient乘以后一层的gradient,这意味着输出值 x 是计算gradient中的乘法因子,直接导致gradient很小,使得参数难以被更新! 让我们将初始值调大一些,均值...
学到这里,我们对logistic回归和多层神经网络都有一个粗浅的概念了,上面的四个从左到右从上到下,分别为单层神经网络(logistic回归),双层神经网络,三层神经网络,多层神经网络。 人工智能的初期阶段多用第一个浅层的神经网络,但是后来大家发现很多函数只有深层的神经网络才可以学习,将隐层数量看作一个可以自由选择数值大...
这时自变量又变回了x。我们希望a、b最优值作为已知参数的情况下,对于我们的输入样本x,通过神经网络计算得到的结果y,与实际结果相符合是大概率事件。 测试函数test() test()函数的作用就是用一组训练时没用到的样本,对训练得到的模型进行测试,把通过这个模型得到的结果与实际想要的结果进行比较,看正确来说到底是多...
如今这年头,徒手写神经网络代码已经不算事儿了,现在流行手搓大模型训练代码了!这不,今天,特斯拉前 AI 总监、OpenAI 创始团队成员 Andrej Karpathy 仅用 1000 行简洁的 C 代码,就完成了 GPT-2 大模型训练过程。 几个小时前,Andrej Karpathy 推出了一个名为 llm.c 的项目,旨在用纯 C 语言训练 LLM,这种方...
如今这年头,徒手写神经网络代码已经不算事儿了,现在流行手搓大模型训练代码了!这不,今天,特斯拉前 AI 总监、OpenAI创始团队成员Andrej Karpathy仅用 1000 行简洁的 C 代码,就完成了 GPT-2 大模型训练过程。 几个小时前,Andrej Karpathy 推出了一个名为 llm.c 的项目,旨在用纯 C 语言训练 LLM,这种方法的...
一、Net类的设计与神经网络初始化 闲言少叙,直接开始 既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人写的程序冲突,所以我的所有程序都包含在namespace liu中,由此...
Net类的设计与神经网络初始化 闲言少叙,直接开始 既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人写的程序冲突,所以我的所有程序都包含在namespace liu中,由此不难想到我姓刘。在之前的博客反向传播算法资源整理中,我列举...
下列属于深度神经网络模型的是()* *A.DNN深层神经网络B.CNN卷积神经网络C.RNN循环神经网络D.GAN生成对抗网络
如果想在普通消费类硬件上运行7 Billion(70 亿)个参数的模型,就必须使用量化模型。 量化格式:GGML/GGUF 和 GPTQ 回顾一下,LLM 是具有高精度权重张量的大型神经网络。将整个模型加载到内存中(这就是为什么需要 RAM!),计算机将单词转换为数字,分析神经网络并提供结果。为了克服硬件限制,需要量化(减少)模型权重,牺...