牛顿迭代法 牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x0作为第一个近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),再过(x1,f(x1))点做f(x)的切线,交x轴于x2,再求出f(x2),再作切线……如...
利用函数完成用牛顿迭代法求根.方程为ax3+bx2+cx+d=0,系数a、b、c、d的值依次为1,2,3,4,有主函数输入.求x在1附近的一个实根.求出根后由主函数输出.用c语言做
用牛顿迭代法求方程在1.5附近的根:2x^3-4x^2+3x-6=0. 解:牛顿迭代法又叫牛顿切线法。设f =2x^3-4x^2+3x-6,f1为方程的导数,则f1 = 6x^2- 8x+3,且f1=(f(x0)-0)/(x0-x1),推导得:x1 = x0 - f / f1 程序: #include<stdio.h> #include<math.h> int main() { double x0,x1,f,...
牛顿迭代法牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x0作为第一个近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),再过(x1,f(x1))点做f(x)的切线,交x轴于x2,再求出f(x2),再作切线……...
牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x0作为第一个近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),再过(x1,f(x1))点做f(x)的切线,交x轴于x2,再求出f(x2),再作切线……如此继续下去,...
牛顿迭代法 牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x0作为第一个近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),再过(x1,f(x1))点做f(x)的切线,交x轴于x2,再求出f(x...