package day_40;// 个人感觉这个题目和 之前的Stock2是一样的// 上面那句是错的,实际上两个题目是不同的思路。publicclassBuySellStock3{publicintmaxProfit(int[]prices){int[]local=newint[3];// k+1int[]global=newint[3];for(inti=1;i<prices.length;i++){intdiff=prices[i]-prices[i-1];for...
Say you have an array for which theithelement is the price of a given stock on dayi. If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit. 大意是:有一个数组,数组的下标表示第几...
for(inti = 1;i<prices.size();i++){ if(prices[i]-prices[i-1] > 0) maxP+=(prices[i] - prices[i-1]); } returnmaxP; 对于iii: 同样不需要额外的空间,而且只需要O(n)的空间复杂度。思路就是我一开始没有钱,buy1是我第一次买股票之后剩的钱(肯定是负的,我白手起家,借钱买股票啊),sel...
"""localmax,globalmax=0,0iflen(prices)>1:prices_diff=[prices[i+1]-prices[i]foriinrange(len(prices)-1)]forpinprices_diff:globalmax=max(globalmax,localmax+p)localmax=max(0,localmax+p)returnglobalmax
第一个:https://leetcode.com/problems/best-time-to-buy-and-sell-stock/?tab=Description 至多交易一次,返回最大利润。实质上是让求一个连续的子串,其最后一个元素和第一个元素只差最大。因为题目要求至多一次交易而不是必须一次,因此如果数组降序,可以选择不交易,所以理论上最小值是0,对应不...
https://leetcode.com/problems/best-time-to-buy-and-sell-stock/leetcode.com/problems/best-time-to-buy-and-sell-stock/ 解题思路 1. 暴力 O(n2) 复杂度,超时 class Solution { public: int maxProfit(vector<int>& prices) { int maxVal = 0; int n = prices.size(); for(int i = 0; ...
网络交易策略是购存 网络释义 1. 交易策略是购存 ...括内幕消息在内的任何信息获得超额收益,此时,最佳的交易策略是购存(Buy-and-Sell)。 www.xzbu.com|基于 1 个网页 例句 释义: 全部,交易策略是购存
1天prices[buy] - dp[buy][k - 1]的最小值的时候,我们又会从头考虑prices[0] - dp[0][k - 1]、prices[1] - dp[1][k - 1]、prices[2] - dp[2][k - 1]...,所以其实没必要每次从头考虑,我们只需要把之前的结果保存起来,然后再和新加入的prices[j+1] - dp[j+1][k - 1]比较就可以...
To buystocks, you’ll typically need the assistance of astockbrokersince you cannot simply call up a stock exchange and ask to buy stocks directly. When you use a stockbroker, whether a human being or anonlineplatform, you can choose the investment that you wish to buy or sell and how th...
Here are some ideas to help you identify the right time to either buy or sell a stock for your portfolio.