转录组测序(bulk RNA-Seq)分析主要包括上游数据处理,下游数据分析。 上游数据处理是指将测得的原始的reads变成基因表达矩阵。 下游数据分析是指对表达矩阵根据生物学问题和意义进行可视化分析。 一 上游数据处理 1.质量控制:对原始测序数据进行质量评估,检查测序质量指标如序列长度分布、测序错误率等,确保数据的准确性和...
对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
今天帮一个师妹做bulk-RNAseq的比对,她本次测序有25个样本,每个样本单独一个文件夹,内含 “_1.fastq”和“_2.fastq”两个文件。所以一共是50个fastq文件。 问题来了:针对大量fastq文件,如何做批量下载与比对?花了大概4个小时,帮她搞定,拿到了counts文件。 具体方案如下: 1.数据转移到服务器 本次测序数据由...
转录组测序(bulk RNA-Seq)的详细分析流程转录组测序分析分为两个主要阶段:上游数据处理和下游数据分析,它们各自包含一系列步骤以揭示基因表达的深度洞察。上游数据处理首先,进行质量控制,通过fastqc和multiqc评估数据的准确性和可靠性,关注序列长度分布和测序错误率等指标。接着,使用trim-galore预处理数...
RNA-SEQ.png 1.数据的质控(Trim_galore) 测序完成后,分析的起点是数据文件,其中包含称为碱基的测序读数,通常采用FASTQ文件的形式。 文件中的每个序列通常由描述行(每条reads的唯一标识,由@开头)、序列数据行、分隔行和质量分数行四行组成,这些行按顺序重复出现,以表示不同的测序读取。
【1】Bulk RNA-seq和scRNA-seq数据收集与预处理 文献解读 TCGA、GEO公共数据下载 差异表达基因分析 富集分析 【翰佰尔生物】 01:13:51 【2】预后模型构建和多种验证方法 单因素多因素COX模型 独立预后 绘制生存曲线 ROC曲线 验证方法【翰佰尔生物】 01:07:14 【3】单细胞分析零代码操作流程 单细胞技术原理...
写在开头:在这一个合集中,我将详细介绍bulk RNA-seq实际数据分析的流程,有哪些注意的地方以及一些小技巧 首先是获取测序数据:如果是自己的测序数据,直接从公司给的账号中下载各个样本的RawData(fastq格式)即可。 如果想要分析公共数据,在GEO数据库输入文章中给出的登录号,如GSE184771,这些数据通常是经过质控、数据归...
1. 提取RNA:从样品中提取总RNA,包括mRNA、rRNA、tRNA等。 2. RNA库构建:将提取的RNA进行反转录,并通过PCR扩增,构建成RNA-seq文库。 3.测序:将文库通过高通量测序技术测序,得到大量的RNA序列数据。 4. 数据分析:对RNA序列数据进行质量控制、比对到基因组和转录组、基因表达量计算和差异分析等。 单细胞测序技术...
旨在通过追踪单细胞最新研究热点,分享单细胞科研前沿信息,知识干货,为大家提供一个专业的单细胞测序分享与沟通交流平台。 如何做科研生物科学 知识 科学科普 生命 bulk RNA-seq 罕见病 测序 遗传病 寻因生物 发消息 全链条双平台单细胞测序应用引领者,关注公众号【寻因生物SeekGene】,获得更多单细胞测序资讯 ...
准备初始数据放在RNA-Seq目录下,命名为`1.rawdata`。 cd ~ mkdir RNA-seq cd RNA-seq 2、FastQC FastQC是一款基于Java的软件,它可以快速地对测序数据进行质量评估。 FastQC会生成一个html结果报告,下载到本地查看即可。 FastQC有3种结果:绿色代表PASS;黄色代表WARN;红色代表FAIL。当出现黄色时说明需要查看结果。