转录组测序(bulk RNA-Seq)分析主要包括上游数据处理,下游数据分析。 上游数据处理是指将测得的原始的reads变成基因表达矩阵。 下游数据分析是指对表达矩阵根据生物学问题和意义进行可视化分析。 一 上游数据处理 1.质量控制:对原始测序数据进行质量评估,检查测序质量指标如序列长度分布、测序错误率等,确保数据的准确性和...
1.数据转移到服务器 本次测序数据由诺禾致源公司提供,通过诺禾云交付平台释放。 方法1: 下载到本地再上传 方便程度 ☆☆☆ 耗费时间: 较长 电脑登录诺禾云交付平台https://data-deliver.novogene.com/login?v=2 下载到本地电脑 通过FileZilla上传到服务器 方法2:利用lnd客户端 方便程度 ☆☆☆ 耗费时间:较...
【1】Bulk RNA-seq和scRNA-seq数据收集与预处理 文献解读 TCGA、GEO公共数据下载 差异表达基因分析 富集分析 【翰佰尔生物】, 视频播放量 2287、弹幕量 0、点赞数 91、投硬币枚数 47、收藏人数 354、转发人数 30, 视频作者 翰佰尔生物, 作者简介 官网:henbio.com/tools |
ls/home/RNA-seq/fastq/*_R1.fq.gz>1ls/home/RNA-seq/fastq/*_R2.fq.gz>2#使用cut命令根据/分隔符提取第5个字段(第一个字段为空,完整文件路径在第5个位置),再次使用cut根据_分隔符提取第1个字段(样本名),并将结果保存到文件0中。ls/home/RNA-seq/fastq/*_R2.fq.gz|cut-d"/"-f5|cut-d"_"-...
RNA-SEQ.png 1.数据的质控(Trim_galore) 测序完成后,分析的起点是数据文件,其中包含称为碱基的测序读数,通常采用FASTQ文件的形式。 文件中的每个序列通常由描述行(每条reads的唯一标识,由@开头)、序列数据行、分隔行和质量分数行四行组成,这些行按顺序重复出现,以表示不同的测序读取。
转录组测序(bulk RNA-Seq)的详细分析流程转录组测序分析分为两个主要阶段:上游数据处理和下游数据分析,它们各自包含一系列步骤以揭示基因表达的深度洞察。上游数据处理首先,进行质量控制,通过fastqc和multiqc评估数据的准确性和可靠性,关注序列长度分布和测序错误率等指标。接着,使用trim-galore预处理...
四、以DESeq2为例演示全过程 篇幅有限,本文仅演示基于DESeq2的差异分析全过程(基于counts进行分析,不能用tpm、fpkm等归一化后的数据,想获得练习数据,可在公众号输入:Bulk RNA-seq练习数据2)。 1.安装并加载R包(若有,则不用重新安装) install.packages('R.utils') ...
3. 比对,生成bam文件:“将RNA-seq的测序reads使用hisat2比对对参考基因租组” /home/glab/Shanyr/software/hisat2-2.1.0/hisat2 -p16-x ../../../bulk_rnaseq/jky-z001/refdata-cellranger-hg19-3.0.0/genes/genome_tran -1../neg/neg_R1.fq.gz -2../neg/neg_R2.fq.gz -S ../neg/neg...
3. 比对,生成bam文件:“将RNA-seq的测序reads使用hisat2比对对参考基因租组” /home/glab/Shanyr/software/hisat2-2.1.0/hisat2 -p16-x ../../../bulk_rnaseq/jky-z001/refdata-cellranger-hg19-3.0.0/genes/genome_tran -1../neg/neg_R1.fq.gz -2../neg/neg_R2.fq.gz -S ../neg/neg...
Bulk-RNAseq的数据量较小,单个raw fastq.gz文件<5G,普通的Mac笔记本就可以带得动,做比对和定量,完全自足;但是scRNAseq数据量较大,单个raw fast.gz文件 > 60G,且需要专门的软件,例如10x Genomics 需要配合CellRanger软件;墨卓单细胞测序平台需要配合Mobivision软件;非常消耗运存和内存,一般情况下需要利用服务器做...