其实“BEV(Bird’s Eye View)+Transformer”是两个方向的技术,BEV是一种全新的3D坐标系,而Transformer则是一种深度学习神经网络模型,BEV+Transformer的组合方案在感知、理解和预测方面表现得更为强大,彻底终结了2D直视图+CNN时代。BEV+Transformer通过鸟瞰视角与Transformer模型的结合,显著提升了自动驾驶系统的环境感知与...
近日,在2023年广州车展期间,不少车企及智能驾驶厂商都发布了BEV+Transformer方案。其中,极越01已经实现了“BEV+Transformer”的“纯视觉”方案的量产,成为国内唯一量产“纯视觉”智驾方案的厂商。预计明年1月,极越01将在BEV+Transformer的基础上通过OTA升级更新OCC占用网络技术,极大提升异形障碍物识别能力和场景泛化能...
叠加技术、市场和政策等多方因素,智能驾驶质变加速。大模型算法的应用,不断突破自动驾驶ODD的上限,从感知到决策控制端到端的自动驾驶模型有望成为未来发展方向。具体到感知端,传感器配置持续“内卷”,多传感器信息融合成为关键课题。基于BEV+Transformer做特征融合,有利于解决图像尺度问题和遮挡问题,更好地实现向量空...
有业内专家表示,基于Transformer模型,智能驾驶有望实现感知与决策一体化,实现端到端的大模型,即模型输入传感器数据、直接输出控制信号,以避免智能驾驶开发架构现存的累计错误或任务协调不足等问题。 而上述智能驾驶趋势,也驱动着摄像头、超声波雷达、毫米波雷达、激光雷达等传感器的变革。有关各细分传感器的应用痛点、成本...
BEV+Transformer架构可在复杂交通场景中识别各类障碍物,包括车辆、行人和道路设施等。通过自注意力机制,系统能够在特征图中捕捉到环境中关键物体的位置和运动方向,并对潜在的障碍物进行跟踪检测,有助于及时生成避障方案。 2.路径预测与动态规划 在路径预测方面,BEV+Transformer架构通过学习环境中各参与者的运动特征,预测...
有业内专家表示,基于Transformer模型,智能驾驶有望实现感知与决策一体化,实现端到端的大模型,即模型输入传感器数据、直接输出控制信号,以避免智能驾驶开发架构现存的累计错误或任务协调不足等问题。 而上述智能驾驶趋势,也驱动着摄像头、超声波雷达、毫米波雷达、激光雷达等传感器的变革。有关各细分传感器的应用痛点、成本...
Transformer允许数据以并行的形式进行计算,且保留了数据的全局视角,而CNN/RNN的数据流只能以串行方式计算,不具备数据的全局记忆能力。传统AI推理专用芯片大多针对CNN/RNN,并行计算表现不佳,且普遍针对INT8精度,几乎不考虑浮点运算。因此想要更好适配Transformer算法,就需要将AI推理芯片从硬件层面进行完整的架构革新,...
此外,华为自研的ADS高阶智能驾驶系统,1.0版本实现基于Transformer的BEV架构,最新的2.0版本增加自研GOD网络,融合激光雷达、毫米波雷达、摄像头等多传感器数据,有效识别异形障碍物,进而实现无高精地图智能驾驶; 毫末智行在应用BEV+Transformer的基础上,基于多年大模型研发经验开发DriveGPT用于提高数据标注和算法训练效率; ...
2、BEV-Transformer架构 在有了Transformer之后,它天然提供了一种机制,可以利用decoder中的cross-attention(交叉注意力)机制,架接3D空间和2D图像空间的关系。 BEV-Transformer的实现方式也可分为两类,一类是通过cross-attention机制,在后端加入3D信息和2D特征的关联,它可以进一步细分为利用相机参数、不利用相机参数两种方式...
Transformer作为一种新型神经网络架构,相比传统神经网络(如CNN),可以直接进行2D、3D不同序列之间的转换。Transformer采用交叉注意力机制,并行训练数据,在跨模态融合以及时序融合过程中,能够更加全面地在空间时序上建模,形成时序融合下的4D空间信息,从而使感知结果更加连续、稳定。在此基础上,BEV算法进一步迭代为...