其实“BEV(Bird’s Eye View)+Transformer”是两个方向的技术,BEV是一种全新的3D坐标系,而Transformer则是一种深度学习神经网络模型,BEV+Transformer的组合方案在感知、理解和预测方面表现得更为强大,彻底终结了2D直视图+CNN时代。BEV+Transformer通过鸟瞰视角与Transformer模型的结合,显著提升了自动驾驶系统的环境感知与...
大模型是当前AI领域最为火热的前沿趋势之一,可赋能自动驾驶领域的感知、标注、仿真训练等多个核心环节。在感知层,以特斯拉为首,"BEV+Transformer"范式已开始在自动驾驶领域得到广泛使用,可有效提升感知精确度,利于后续规划控制算法的实施,促进端到端自动驾驶框架的发展。BEV全称Bird'sEyeView,即鸟瞰图,该算法旨在...
其实“BEV(Bird’s Eye View)+Transformer”是两个方向的技术,BEV是一种全新的3D坐标系,而Transformer则是一种深度学习神经网络模型,BEV+Transformer的组合方案在感知、理解和预测方面表现得更为强大,彻底终结了2D直视图+CNN时代。BEV+Transformer通过鸟瞰视角与Transformer模型的结合,显著提升了自动驾驶系统的环境感知与...
同时,需要将数据序列化,以便 Transformer 模型能够处理时序信息。 2.1、Transformer 编码器 Transformer 编码器由多层相同的子层组成,每个子层包含两个部分:多头自注意力(Multi-Head Attention)和前馈神经网络(Feed-Forward Neural Network)。 多头自注意力:首先将输入序列分为 h 个不同的头,分别计算每个头的自注意力...
BEV+Transformer算法为主流趋势,优势在于全局视野 算法迭代:2D直视图+CNN→BEV+Transformer→BEV+Transformer+Occupancy→端到端。 传统“2D直视图+CNN”感知框架:路况感知信号由相机收集到的2D图像和雷达收集到的3D图像组成,不同感知结果通过CNN(卷积神经网络)进行后融合,通过大量计算统一升维到3D状态下车机行驶的坐标系...
BEV(鸟瞰视图)模型基于多个摄像头甚至不同传感器,可以被视为解决上述SLAM+DL第一代自动驾驶技术问题的潜在技术方案,本文将BEV+Transformer结合技术成为自动驾驶感知2.0时代。如图4所示,BEV以鸟瞰图视角呈现车辆信息,是自动驾驶系统中跨摄像头和多模态融合的体现。其核心思想是将传统的2D图像感知转为3D感知。对于BEV感知来...
基于Transformer模型的BEV技术成为当下的热门选择。亿欧汽车始终关注智能电动汽车领域的技术进展与商业动态,特此撰写BEV+Transformer系列文章,从技术、商业、趋势三个维度分别入手,深度剖析自动驾驶感知模块发展的新浪潮。一、高阶智能驾驶感知模块:汽车成为机器生物的第一步 实现高级辅助驾驶乃至自动驾驶的第一步就是感知...
Transformer优点: 1 适合并行计算(和CNN差不多) 2 适合做(时间)序列,所以BEV有了这个能力 3 对于大模型容易训练 (因为参数冗余多,不容易陷入局部最优),CNN也比较容易训练(自动驾驶适用大小的模型)。 4 可以建立长距离的联系 (CNN不行,MLP可以但是太臃肿) ...
这主要归因于它们依赖于基于视觉 Transformer (ViT)的架构,这使得相对于输入分辨率,其具有平方复杂度。 为了解决这个问题,作者提出了一种高效的BEV-based 3D检测框架,称为BEVENet,它利用了卷积神经网络(CNN)的唯一架构设计,绕过了ViT模型的限制,同时保持了BEV方法的有效性。 作者的实验表明,与当前最先进(SOTA)方法...
BEV(鸟瞰视图)模型基于多个摄像头甚至不同传感器,可以被视为解决上述SLAM+DL第一代自动驾驶技术问题的潜在技术方案,本文将BEV+Transformer结合技术成为自动驾驶感知2.0时代。如图4所示,BEV以鸟瞰图视角呈现车辆信息,是自动驾驶系统中跨摄像头和多模态融合的体...