所以,B+树只要遍历叶子节点就可以实现整棵树的遍历,支持基于范围的查询,而B树不支持range-query这样的操作(或者说效率太低)。 三、B*树 B∗树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针,将结点的最低利用率从1/2提高到2/3。 B∗树定义了非叶子结点关键字个数至少为2/3M,即块的最...
二叉查找树的查询时间复杂度比链表快,链表的查询时间复杂度是O(n),二叉排序树平均是O(logn)。二叉查找树越平衡,越能模拟二分法,所以与二分的思想相似,二叉查找树查询的时间复杂度O(logn)。 缺点: 如果插入的结点的值的顺序,是越来越小或者越来越大的,那么BST就会退化为一条链表,那么其查询的时间复杂度就会降为...
从二叉树的查找过程了来看,树的高度和磁盘IO的次数都是4,所以最坏的情况下磁盘IO的次数由树的高度来决定。 从前面分析情况来看,减少磁盘IO的次数就必须要压缩树的高度,让瘦高的树尽量变成矮胖的树,所以B-Tree就在这样伟大的时代背景下诞生了。 二、B-Tree m阶B-Tree满足以下条件: 1、每个节点最多拥有m个子树...
如我们分别查询B-树/B+树节点 key 为 50 的 data。 B-树 key 为 50 的节点恰好就在第一层,B-树只需要一次磁盘 IO 即可完成查找。所以说B-树的查询最好时间复杂度是 O(1)。 B+树 由于B+树所有的 data 域都在根节点,所以查询 key 为 50的节点必须从根节点索引到叶节点,时间复杂度固定为 O(log ...
B 树就比B+树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。B+树的查询效率更加稳定 由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
二叉查找树查询的时间复杂度是O(logN),从算法逻辑上来讲,二叉查找树的查找速度和比较次数都是最小的,但需要考虑一个现实问题:磁盘IO 数据库索引是存储在磁盘上的,当数据量比较大的时候,索引的大小可能有几个G,甚至更多 当我们利用索引查询的时候,不能将整个索引全部加载到内存中,能做的只有逐一加载每一个磁盘页...
B+树每次查找都必须到叶子节点才能获取数据,而B树不一定,B树可以在非叶子节点上获取数据。因此B+树查找的时间更稳定。 B+树的每一个叶子节点都有指向下一个叶子节点的指针,方便范围查询和全表查询:只需要从第一个叶子节点开始顺着指针一直扫描下去即可,而B树则要对树做中序遍历。
如果还是查询id=10的数据,就只需要查询1,6,9,10就能找到,比两层的时候更快一些。 三层跳表查询id为10的数据 可以看出,跳表也是通过牺牲空间换取时间的方式提升查询性能。时间复杂度都是lg(n)。 B+树和跳表的区别 从上面可以看到,B+树和跳表的最下面一层,...
从上图可以看出,key 为 50 的节点就在第一层,B-树只需要一次磁盘 IO 即可完成查找。所以说B-树的查询最好时间复杂度是 O(1)。 1.2 B+树 m阶的b+树的特征: 1. 有n棵子树的非叶子结点中含有n个关键字(b树是n-1个),这些关键字不保存数据,只用来索引,所有数据都保存在叶子节点(b树是每个关键字都保...