AUC-ROC曲线是在不同阈值设置的条件下,分类问题的性能度量。ROC的含义为概率曲线,AUC的含义为正负类可正确分类的程度。它告诉模型能够在多大程度上区分类,AUC越高,模型越能预测0为0和1为1。类比疾病诊断模型,若AUC越高,模型对有疾病和无疾病的区分就越好。 ROC曲线由TPR与FPR作图,其中TPR是y轴,FPR是x轴。如...
如果测试集中的正负样本比例发生改变,ROC曲线也不会变化。原因在于,roc曲线的横纵坐标fp rate, tp rate分别在标签为负类、正类中计算,正负样本比例发生变化,对应tp、fp也会发生相应的变化,tp_rate/fp_rate可能会保持不变。 ROC曲线绘制方法 roc曲线的绘制主要就是需要找到图像中的各个坐标点,所以这个算法的主要目...
ROC曲线和AUC值是评价分类监督学习性能的重要量度指标。ROC曲线又被称为“接受者操作特征曲线”“等感受性曲线”,主要用于预测准确率情况。最初ROC曲线运用在军事上,现在广泛应用在各个领域,比如判断某种因素对于某种疾病的诊断是否有诊断价值。曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反映,只不过是在...
AUC-ROC曲线是在不同阈值设置的条件下,分类问题的性能度量。ROC的含义为概率曲线,AUC的含义为正负类可正确分类的程度。它告诉模型能够在多大程度上区分类,AUC越高,模型越能预测0为0和1为1。类比疾病诊断模型,若AUC越高,模型对有疾病和无疾病的区分就越好。 ROC曲线由T...
全面了解ROC曲线 一. 初识ROC曲线 ROC的前世今生:ROC的全称是“受试者工作特征”(Receiver Operating Characteristic)曲线, 首先是由二战中的电子工程师和雷达工程师发明的,用来侦测战场上的敌军载具(飞机、船舰),也就是信号检测理论。之后很快就被引入了心理学来进行信号的知觉检测。此后被引入机器学习领域,用来评判...
ROC曲线: 横轴:假阳性率 代表将负例错分为正例的概率 纵轴:真阳性率 代表能将正例分对的概率 AUC是ROC曲线下面区域得面积。 与召回率对比: AUC意义: 任取一对(正、负)样本,把正样本预测为1的概率大于把负样本预测为1的概率的概率。基于上述,AUC反映的是分类器对样本的排序能力,如果进行随机预测,那么AUC的...
AUC-ROC曲线是如何工作的 在ROC曲线中,较高的X轴值表示假正例数高于真反例数。而Y轴值越高,则表示真正例数比假反例数高。 因此,阈值的选择取决于在假正例和假反例之间进行平衡的能力。 让我们深入一点,了解不同阈值下ROC曲线的形状,以及特异性和敏感性的变化。
综上两个图,如果我们想要用ROC来评估分类器的分类质量,我们就可以通过计算AUC(ROC曲线下的面积)来评估了,这就是AUC的目的。 其实,AUC表示的是正例排在负例前面的概率。 比如上图,第一个坐标系的AUC值表示,所有的正例都排在负例的前面。第二...
图1:ROC曲线与AUC面积 现实任务中通常是利用有限个测试样例来绘制ROC图,此时仅能获得有限个(真正例率,假正例率)坐标对,无法产生图1中的光滑ROC曲线,只能绘制出图2所示的近似ROC曲线。绘制过程很简单:给定 个正例和 个反例,根据学习器预测结果对样例进行排序,然后把分类阈值设置为最大,即把所有样例均预测为反例...