全面了解ROC曲线 一. 初识ROC曲线ROC的前世今生: ROC的全称是“受试者工作特征”(Receiver Operating Characteristic)曲线, 首先是由二战中的电子工程师和雷达工程师发明的,用来侦测战场上的敌军载具(飞机、…
ROC 曲线和 AUC:通过绘制 ROC 曲线并计算 AUC,我们可以看到 AUC 为 0.50,这表明模型没有任何区分能力。ROC 曲线是一条对角线,显示模型在随机猜测。 准确率只告诉我们模型整体预测正确的比例,但在类别不平衡的情况下,这个指标可能会误导我们。ROC 曲线和 AUC 提供了更全面的视角,展示了模型在不同阈值下的性能,帮...
每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图: 当我们将threshold设置为1和0时,分别可以得到ROC曲线上的(0,0)和(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当threshold取值越多,RO...
auc和roc曲线解释 AUC (Area Under the Curve)和ROC (Receiver Operating Characteristic)是用于评估二分类模型(如二分类算法)性能的常用指标和画图技术。 ROC曲线是以统计学中诊断测试为基础的可视化工具,用于表示二分类问题中的模型和分类器的性能。其横轴表示伪正类率(False Positive Rate,FPR),即实际为负样本但...
AUC是ROC曲线包围的面积,也继承了ROC本身的特点,是一种衡量模型排序能力的指标,等效于–对于任意一对正负例样本,模型将正样本预测为正例的可能性大于 将负例预测为正例的可能性的概率。 还是推荐第一种计算方法。顺便给出一个Python代码: 代码语言:javascript ...
AUC为ROC曲线下的面积,它的面积不会大于1,由于ROC曲线一般都处于直线y=x的上方,因此AUC的取值范围通常在(0.5,1)之间。由于ROC曲线不能很好的看出分类器模型的好坏,因此采用AUC值来进行分类器模型的评估与比较。通常AUC值越大,分类器性能越好。 在基本概念中我们提到了精确率、召回率以及F1值,既然有它们作为二分类...
ROC的全名叫做Receiver Operating Characteristic,中文名字叫“受试者工作特征曲线”,其主要分析工具是一个画在二维平面上的曲线——ROC 曲线。平面的横坐标是false positive rate(FPR),纵坐标是true positive rate(TPR)。对某个分类器而言,我们可以根据其在测试样本上的表现得到一个TPR和FPR点对。这样,此分类器就可...
AUC面积的数值不会大于1。ROC曲线一般都处于y=x这条直线的上方-->AUC的取值范围在0.5和1之间 使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。 0,1 都靠中心斜线,主要看中间段,中间段正样本排前面的越多,属于正样本的概率值大...
机器学习模型的性能测量是一项必不可少的工作,因此,当涉及到分类问题时,我们可以考虑用AUC-ROC曲线 。当我们需要检查或可视化多分类问题的性能时,我们使用ROC曲线下的面积(AUC),它是检验任何分类模型性能最重要的评估指标之一。 本文旨在回答以下问题: 1. 什么是AUC-ROC曲线 ?