此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ROC Curve),如图1、图2所示。 五、什么是AUC面积 AUC就是ROC曲线下的面积,衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。假定ROC曲线是由坐标为 的点按序连接而形成,参见图2,则AUC...
此时如果一定要进行比较,则比较合理的判断依据是比较ROC曲线下的面积,即AUC(Area Under ROC Curve),如图1、图2所示。 五、什么是AUC面积 AUC就是ROC曲线下的面积,衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。假定ROC曲线是...
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面...
一般来说,ROC曲线下面积在0到1之间。如果一项诊断试验的灵敏度是1,而假阳性率是0,那么该诊断试验的ROC曲线下面积就是1。但是这样的诊断试验几乎不存在,一个诊断试验往往不能将所有的患者和非患者都准确地识别出来。同时,也不会出现某一项诊断试验的ROC曲线下面积为0的情况,因为基本不会有一项诊断试验错误地识别了...
AUC就是曲线下面积,在比较不同的分类模型时,可以将每个模型的ROC曲线都画出来,比较曲线下面积做为模型优劣的指标。ROC 曲线下方的面积(Area under the Curve),其意义是: (1)因为是在1x1的方格里求面积,AUC必在0~1之间。 (2)假设阈值以上是阳性,以下是阴性; ...
一般来说,如果ROC是光滑的,那么基本可以判断没有太大的overfitting,AUC面积越大一般认为模型越好。 三.AUC值作为评价标准 1. AUC (Area Under Curve) 被定义为ROC曲线下的面积,取值范围一般在0.5和1之间。 使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AU...
AUC是Area under curve的首字母缩写,从字面上理解,就是ROC曲线下的面积大小,该值能够量化地反映基于ROC曲线衡量出的模型性能。由于ROC曲线一般都处于y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1-p就可以得到一个更好的分类器),所以AUC的取值一般在0.5-1之间。AUC越大,说明分类器越可能把真正...
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间。Auc作为数值可以直观的评价分类器的好坏,值越大越好。 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面...
AUC在机器学习领域中是一种模型评估指标。根据维基百科的定义,AUC(area under the curve)是ROC曲线下的面积。所以,在理解AUC之前,要先了解ROC是什么。而ROC的计算又需要借助混淆矩阵,因此,我们先从混淆矩阵开始谈起。 混淆矩阵 假设,我们有一个任务...