这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。相对于CPU和GPU的冯诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比CPU和GPU高。那么
本文将深入剖析五类主要计算加速器——GPU、FPGA、ASIC、TPU和NPU,从技术架构、性能特点、应用领域到产业生态进行系统化比较,并分析在不同应用场景下各类加速器的适用性。 硬件加速器的基本原理与关键指标硬件加速器是专门设计用于从通用CPU卸载...
这就不得不提到FPGA(现场可编程门阵列,Field Programmable Gate Array),顾名思义,FPGA 是一种可编程集成电路,可由用户配置以执行特定任务。 相对于CPU和GPU的冯·诺依曼结构,FPGA采用无指令、无需共享内存设计,每个逻辑单元的功能在重编程时就已经确定,使得FPGA的能效要比...
对这类任务,目前我们正在用的 Altera(似乎应该叫 Intel 了,我还是习惯叫 Altera……)Stratix V FPGA 的整数乘法运算性能与 20 核的 CPU 基本相当,浮点乘法运算性能与 8 核的 CPU 基本相当,而比 GPU 低一个数量级。我们即将用上的下一代 FPGA,Stratix 10,将配备更多的乘法器和硬件浮点运算部件,从而理论上可...
GPU GPU(Graphics Processing Unit,图形处理器):一种专用处理器,主要用于图形、影像、视频等计算密集型应用。GPU采用并行处理方式,可以同时处理多个指令,适合于并行计算,其算力比CPU高,但功耗也较高。FPGA FPGA(Field-Programmable Gate Array,现场可编程门阵列):一种可编程逻辑器件,可以按照用户需求进行编程...
在科技日新月异的今天,计算力已成为推动社会进步和产业升级的重要驱动力。而在这片浩瀚的计算海洋中,CPU、GPU、ASIC与FPGA作为四大核心力量,各自扮演着不可替代的角色。下面就由文档君带领大家深入探索这四种计算单元的奥秘。
揭秘AI芯片领域的巨头:CPU、GPU、FPGA、ASIC的特性与优劣对比 当前,智能驾驶领域在深度学习AI算法方面主要依赖通用芯片,如GPU和FPGA,来实现加速。同时,部分芯片企业开始设计专门针对AI算法的ASIC专用芯片。在智能驾驶产业应用尚未大规模兴起和批量投放之前,使用通用芯片可以避免专门研发定制芯片的高投入和高风险。然而...
GPU在并行计算能力和原始FLOPS性能上通常优于CPU,但在特定任务的能效比上可能不及FPGA或ASIC。其通用计算架构使其比ASIC和TPU更具灵活性,但在固定计算任务上效率相对较低。2. 可程序化逻辑门阵列(FPGAs)技术架构与特性FPGA是一种可在制造后重新配置的集成电路,由可编程逻辑块、可配置互连和I/O单元组成。与固定...
当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少,另外一种说法是还有一种类脑芯片,算是ASIC的一种。